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Abstract

This article investigates how environmental adversity affects competitive performance

in cognitive-intensive settings. Using a comprehensive dataset of professional eSports

tournaments and match-hour variation of fine particulate matters, we find robust evi-

dence that pollution kills competition. Specifically, higher air pollution levels diminish

the performance and winning odds of the weaker team in a matchup while boosting that

of the stronger team, widening the gap between them. We document two operating chan-

nels: (i) pollution leads to heterogeneous performance-reducing effects contingent on a

team’s relative strength against their opponent, rather than its absolute competitiveness;

and (ii) a weaker team adjusts their strategic decision-making differently in a polluted

environment compared to their stronger counterparts. Our findings elucidate the dis-

tributional impact of environmental adversity and underscore its influence on strategic

decision-making.
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1 Introduction

Since the seminal work of Graff Zivin and Neidell (2012), environmental economists have inves-

tigated how environmental adversity affects human cognitive and physical productivity (see, e.g.,

Dominici et al., 2014; Chang et al., 2016, 2019; Archsmith et al., 2018; He et al., 2019; Park

et al., 2020; Adhvaryu et al., 2022; Park, 2022). Nonetheless, most studies focus on independent

decision-making contexts, whereas the consequences of environmental adversity in competition—

where players are reflexively entangled—have rarely been examined. The impact of environmental

adversity in competitive settings deserves careful investigation because its effect on a competition’s

outcome is multifaceted and unclear a priori: On the one hand, environmental adversity may have

heterogeneous health impacts on the cognitive functioning of different players, whether they make

decisions independently or in competition. On the other hand, environmental adversity may affect

the strategic decision-making between competitors: Players need to factor in not only the impact of

environmental adversity on their own performance but also that on their competitors when making

decisions. To the best of our knowledge, this latter mechanism remains largely unexplored and we

aim to fill this void.

This paper studies the implications of air pollution—the world’s greatest environmental health

threat— in a contest setting in which final outcomes are based on all players’ competitive relative

performance.1 We study the impact of air pollution not only on equilibrium performance outcomes

but also on players’ decision-making in competition. We focus on a contest setting for two reasons.

First, contest generates distinctively rich and intricate strategic interactions. As Dixit (1987)

demonstrates, players’ best responses are often nonmonotone in contest: A player’s efforts may

optimally increase or decrease when her rival increases effort, depending on her relative standing

to the rival.2 Second and importantly, prior studies on air pollution and labor productivity mainly

focus on the absolute measure of performance; however, in a contest, prizes are allocated based on

1. This setting stands in contrast to independent single-player decision-making and resembles many competitive
events ranging from school admissions to personnel promotion, electoral competitions, arms races between nations,
business project bidding, lobbying, R&D races, advertising campaigns, and sporting events. See Fu and Wu (2019)
for a recent survey of theoretical studies of contests.

2. Consider the tortoise and the hare. When the tortoise reduces its effort, the hare is tempted to reduce its effort,
since a less competitive opponent allows it to slack off without suffering lower winning odds. In contrast, the hare’s
shirking would instead give hope to the tortoise and motivate it to further step up its effort.
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relative performance, and many measurable outcomes—e.g., win or loss, and a range of performance

measures—are inherently relative.3 A contest environment thus enables us to explicitly study the

distributional implications of air pollution.

Our setting is the League of Legends (LoL) Professional League, the world’s most popular elec-

tronic sports (eSports) tournament. Like many professional sports, LoL holds regular tournament

seasons every year and the champion wins a substantial prize. Each match consists of two phases:

(i) a preparation phase, in which each team decides on five active players and each player chooses a

champion (avatar); and (ii) a competition phase, in which players battle on a standard game map

using their chosen champions and destroy the rival’s homebase to win the match (see a game map

in Appendix Figure B1). The match is extremely intensive and highly strategic. All players are

professionals and all in-game decisions—from the pre-battle selection of players and champions to

specific battle tactics—are planned, practiced, and deliberately executed.

The LoL tournament provides a desirable empirical setting to study the impact of air pollution

in competition. First, the match schedule is predetermined and published weeks before the com-

mencement of each season. It is thus independent of subsequent variations in air pollution or any

unobserved factors. Second, multiple matches are held on each match date. This allows us to ex-

ploit the plausibly random hourly variation of fine particulate matters (PM2.5) across matches. All

players compete in a large indoor stadium, so players in a given match are exposed to the same level

of air pollution, but are unaffected by weather conditions. Third, each match demands extremely

intensive cognitive engagement—e.g., attention, memory, dynamic learning, and strategic planning

(Granic et al., 2014; Stafford and Dewar, 2014)—and requires minimum physical input.4 Overall,

we exploit this quasi-experimental setting to investigate the impact of increased short-term expo-

sure to air pollution on competitive performance in a highly rewarding, cognitive-intensive contest.

We obtain administrative match statistics for all matches in China’s LoL Professional League from

2017 to 2021, merged with detailed records of air pollution at the hour of each match.

We find that a higher level of air pollution enhances the performance of the stronger team

3. Take a soccer game as an example. While both teams may be handicapped by exposure to air pollution, a
team’s final score—a key observable measurement of performance—may increase or decrease because it depends on
both teams’ plays during the match.

4. Each player competes on a uniformly configured computer with keyboard and mouse.
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in a matchup and hampers that of the weaker team, regardless of a team’s absolute strength. In

particular, a 10 µg/m3 increase in PM2.5 (or 0.36 standard deviations (SD) of PM2.5 in the sample

period) statistically significantly increases the winning probability of the stronger team—which

depends on both teams’ play—by 1 percentage point (pp). This effect is economically meaningful:

A 1 SD increase in PM2.5 widens the gap in winning probabilities between teams by 5.5 pp—

which sets two rivals apart by 12.3 percentiles in the seasonal team ranking, holding air quality in

other matches constant. We next turn to the set of performance measures—such as each team’s

kills, assists, and gold—which are again jointly determined by both teams’ plays. Although these

measures are not zero-sum in nature as win or loss, we find a consistent pattern: Air pollution

widens the gap in these performance measures between rivals. Moreover, the magnitude of this

gap-widening effect depends on the difference in strength between rival teams: The gap-widening

effect is more pronounced when the difference in strength becomes greater; when teams are on

par, the effect becomes negligible. These results altogether suggest that the balance of a match is

more tilted in favor of the relatively stronger team, and as a result, the whole tournament is more

lopsided in a more polluted environment. We validate these findings in various robustness checks.

We provide additional evidence that air pollution kills competition. First, under higher air

pollution, the stronger team is more likely to achieve multiple kills of rival team’s champions,

resembling a scoring spree in basketball and a 40-love game in tennis. Such a killing spree delivers

a huge blow to the losing team’s resources and spirit and a huge boost to the winning team’s, and

usually leads to a landslide defeat of the losing team. The distributional impact of air pollution on

multiple kills can explain 56% of the distributional impact on final win or loss. Second, we predict a

match’s outcome based on two teams’ ex ante competitiveness level—i.e., we predict a team with a

higher competitiveness level will win—and define an accuracy indicator if the predicted win or loss

is the same as the actual one. We show that higher air pollution statistically significantly increases

the prediction accuracy, which suggests that high pollution significantly reduces the uncertainty and

suspense of the competition. Lastly, higher air pollution reduces the overall intensity of competition,

measured by the summed performance metrics from both teams.

We proceed to explore two channels that may drive such a distributional effect of air pollution

in competition. First, air pollution may have a direct heterogeneous impact on a player’s cognitive
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performance. While prior studies have found heterogeneous cognitive impacts across predetermined

individual-specific and job-specific traits, such as gender (Graff Zivin et al., 2020; Ebenstein et al.,

2016); ability (Roth, 2021; La Nauze and Severnini, 2021); and experience (Krebs and Luechinger,

2021), we find that in competitive settings the heterogeneity of treatment effect is with respect to

a team’s relative strength against a match-specific opponent. This large, relative-strength depen-

dent effect of air pollution remains intact after accounting for a team’s absolute strength and its

interaction with PM2.5 levels. Moreover, this heterogeneous impact is not alleviated by potential

pollution acclimation—i.e., teams from more polluted home cities may be less affected by elevated

pollution levels in the tournament host city. In particular, the coefficients of interest remain robust

when considering (i) whether a team trains in a more polluted home city than the host city, (ii)

whether it trains in a more polluted home city than the rival team, or (iii) whether it competes in

its home city.

Second, a player in a strategic setting may respond not only directly to a cognitive impact of

air pollution on her performance, but also indirectly to her opponent’s responses to air pollution.

We investigate air pollution’s impact on players’ strategic interactions—a channel that naturally

arises in a competitive setting but has yet to be formally discussed in the literature of air pollution.

We first present evidence that players are aware of the level of air pollution. We then exploit the

preparation phase—a unique, standalone phase of the eSports match—in which each team decides

strategically on the team setup and champion choices. While we are unable to observe each team’s

decision-making in the competition phase, as is true in most competitive settings, we can do so in

the preparation phase. We construct four measures of a team’s decisions: (i) total decision time,

(ii) frequency of the pick-and-switch of champions, (iii) indicator of adopting the most frequently

used team lineup, and (iv) indicator of picking the most frequently used champion. We find that a

team’s decision on the choice of lineup and champions varies when exposed to higher pollution, and

the variation again depends on its relative strength against its rival. In particular, when exposed to

a higher level of air pollution, the weaker team in a matchup statistically significantly increases its

decision time, increases the intensity of changing champions before the final choice, and becomes

more likely to adopt more aggressive tactics—e.g., adopting a less frequently used team lineup

and champions. In contrast, these patterns are not present for the stronger team, regardless of its
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absolute competitiveness. Lastly, we develop a stylized contest model to elaborate on the role of

air pollution in shaping equilibrium outcomes through its impact on teams’ strategic interactions.

Our results altogether validate the impact of air pollution on strategic decision-making between

teams in competitive settings.

In summary, we have shown that air pollution gives the stronger team a competitive edge against

its weaker rival in a cognitive-intensive, competitive environment. Environmental adversity tends

to reduce the uncertainty of the competition. Our findings have two opposing policy implications

for the non-health impacts of air pollution in competition. If the purpose of competition is to

select and reward the highest-ability team, then environmental adversity would tilt the balance

of the competition in favor of selecting out the highest-ability team. However, if uncertainty and

suspense—which are crucial for the eSports industry in increasing viewership and sponsorship—are

the vital elements for a competition, then a higher level of air pollution tends to defeat this purpose.

Related Literature Our research is naturally linked to the large literature that examines the

impact of air pollution on individual’s well-being and economic and societal outcomes beyond com-

monly measured health indicators such as hospitalization and mortality. An emerging literature has

delved into the causal relationship between air pollution and various aspects of cognitive decision-

making and performance, including labor productivity (Graff Zivin and Neidell, 2012; Chang et al.,

2016, 2019; Adhvaryu et al., 2022; He et al., 2019; Borgschulte et al., 2018), students’ exam results

(Graff Zivin et al., 2020; Roth, 2021), and decision quality in high-skilled professions such as judges,

chess players, and financial investigators (Dong et al., 2021; Kahn and Li, 2020; Archsmith et al.,

2018; Künn et al., 2023). While it is important to distinguish between the impacts of pollution

on physical health and cognitive performance, the underlying mechanism for both types of adverse

impacts is rooted in physical health factors. The prevailing consensus in this literature is that

air pollution can affect cognitive functioning primarily through its physical harms (Aguilar-Gomez

et al., 2022), such as causing irritation of the respiratory system, disruption of oxygenation in cells,

and inflammation in the brain (Peeples, 2020).

Our study unveils a novel, nonhealth mechanism, the strategic interactions, through which air

pollution can shape individual decision-making and equilibrium outcomes in competitive contexts.
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Our study complements the existing literature in two fundamental ways. First, unlike traditional

single-agent decision-making settings where players (individuals or firms) operate in isolation, we

focus on competitive environments where multiple rivals vie for a reward. This setting inherently

involves strategic interactions among players, who must factor in the detrimental effects of air

pollution on both their own performance and that of their opponents. Second, our work highlights

the distributional effects of air pollution in competition. Rather than uniformly impairing all

parties, air pollution might bolster the relative performance of some while hindering others. This

notion of air pollution enhancing relative performance in certain scenarios is novel in the existing

literature. Moreover, air pollution may deepen the underlying gap in ability or resources between

rivaling parties, tilting the playing field in favor of the more advantaged, and widening the outcome

inequalities. Our findings shed light on how environmental adversity can exacerbate workplace

inequalities across a diverse array of real-life competitive settings.

Our study also contributes to the understanding of the heterogeneous effects of air pollution.

While previous research has examined pollution’s heterogeneous effects mainly as supplementary

evidence to a baseline average effect, our study delves into the implication of pollution’s hetero-

geneous impacts more comprehensively in competitive settings. In physical health outcomes, such

as disease incidence and hospitalization, prior studies generally observe that air pollution has a

greater adverse impact on the more physically vulnerable. However, in cognitive-intensive settings,

the evidence is more mixed. For instance, studies on high-stakes exams by Graff Zivin et al. (2020)

and Roth (2021) find that air pollution disproportionately affects high-ability students, whereas

Ebenstein et al. (2016) find the opposite, with a stronger impact on low-ability students. Exam-

ining an online brain-training game, Krebs and Luechinger (2021) discover that higher pollution

hampers the performance of skilled players more than beginners, whereas La Nauze and Severnini

(2021) document a greater impact on those with lower skill proficiency.

In multi-player competitive contexts, evidence is scarce. Our study is closely related to the

recent work of Künn et al. (2023), who investigate how air pollution affects chess players’ cognitive

performance in chess tournaments. Our work complements Künn et al. (2023) but differs in several

aspects. First, we focus on exploring the distributional impact of air pollution in competition,

while Künn et al. (2023) primarily examine how air pollution undermines cognitive performance.
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Second, while Künn et al. (2023) primarily analyze one aspect of player performance, namely

errors in chess moves,5 we provide novel evidence on pollution’s effect on measures of players’

efforts, such as decision time and selections of team lineup and champions, in addition to a broad

range of performance measures. Third, our findings on how air pollution reduces suspense and

unpredictability of competition and unbalances the playing field between asymmetric players hold

important policy implications for various real-world competitive settings.

Lastly, our paper contributes to the thin empirical literature on contests. Brown (2011) uses

panel data from professional golf tournaments to test the superstar effect. Boudreau et al. (2016)

study a software development contest through the lens of contest design and find that a contestant’s

performance response to added competitors varies across contestants of different abilities. Malueg

and Yates (2010) and Liu et al. (2022) study best-of-three contests in professional tennis and provide

evidence of strategic momentum in dynamic contests. In a setting similar to ours, Liu et al. (2022)

show that heat and air quality affect players’ willingness to fight on, and the prevalence of prolonged

contests drops sharply when the ambient environment deteriorates. We show that a more adverse

ambient environment tilts the balance of the contest in favor of the stronger and reduces the degree

of suspense.

The rest of the article is organized as follows. Section 2 describes the background and data

source of our empirical investigation. Section 3 presents estimation results on the average and

distributional effects of air pollution. Section 4 presents robustness analyses. Section 5 discusses

the importance of relative standing and strategic interactions in our empirical setting. Section 6

concludes.

2 Background and Data

In this section, we introduce the eSports context of our study, key features of the LoL tourna-

ment, and the game mechanics that make it an ideal setting for our empirical investigation. We

also describe the data structure of LoL tournaments in China, which our subsequent analyses rely

5. Künn et al. (2023) employ a chess engine algorithm to evaluate a player’s performance in each move, which
considers both players’ previous moves and identifies an “optimal move.” They evaluate a player’s decision quality
based on deviations from this optimal move.
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on.

2.1 Background

ESports Industry ESports is a rapidly growing form of video game-based team sports in a

professional tournament setting. It has attracted a huge global audience and generated total revenue

that outperforms many traditional sports, such as Major League Baseball (MLB) and the National

Basketball Association (NBA).6 China is the leading eSports market, which grossed $360 million

in 2021 and accounted for nearly a third of worldwide eSports revenues. The United States is the

second largest market, followed by Western Europe.

LoL is one of the fastest growing—and currently the world’s largest—eSports game. Developed

and published by Riot Games, it had amassed a player base of over 80 million active monthly

players and grossed over $1.75 billion worldwide in 2020. The game had over 7, 000 professional

players and a prize pool of over $79 million in 2020.7

LoL Gameplays LoL has a clear game objective and well-defined rules. In each LoL match, two

teams of five players compete against each other. Each match consists of two phases, a preparation

phase and a competition phase. In the preparation phase, each team decides on the roster of five ac-

tive players and each player chooses a champion from a pool of available champions. Each champion

has a set of unique abilities, which can counter certain champions effectively and be countered. It is

crucial that teams carefully and deliberately select their champions for the battle. After champion

selection, players head into the competition phase on a standard map (see Appendix Figure B1). In

the competition phase, each player controls their champion (avatar) from an isometric perspective

to battle against the rival team. All champions spawn and respawn, if killed, in their homebase

(the diagonal corners on the game map). Team members collaborate to kill champions of the rival

team and defeat neutral minions on the map to earn experience and gold for upgrades, and push

6. The global eSports audience reached 532 million in 2022, and is expected to reach 577 million in 2024. The global
eSports market was valued at US$1.39 billion in 2022; the market is expected to grow at an annual rate of 24.8-27.2%
from 2022 to 2025, according to Goldman Sachs Investment Research, NewZoo survey (2022 Global ESports Market
Report).

7. In comparison, the NBA Championship had a total prize pool of $13 million in 2018, the Masters (golf) $11
million, Tour de France $2.8 million, Melbourne Cup $6.2 million, and Confederations Cup $20 million. For more
discussion of the eSports industry, see Appendix E.1.
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through the rival’s defensive turrets to attack on the rival’s homebase. A team wins if the rival’s

homebase is destroyed or the rival surrenders. The match sets no time limit, but is fast paced and

generally ends in 30 minutes. More details of game mechanics are provided in Appendix E.2.

Gameplay in LoL tournaments is strategic. All players are full-time professionals. Teams invest

extensively in player management, tactical training, and teamwork. Most players play a single role

in a team—like professional athletes in other team sports such as basketball—with limited role

swapping. All in-game strategies—ranging from choosing the appropriate roster of champions to

detailed tactics to achieve specific objectives—are planned, trained, and rigorously executed during

a match. In summary, strategic gameplay is at the core of a tournament match.

Empirical Setting The professional LoL league in China, referred to as the League of Legends

Pro League (LPL), provides the empirical context for this study. LPL is the largest regional LoL

tournament.8 The first LPL season started in 2013. Since then, two seasons (spring and summer)

are held each year. Each season has regular-season games and playoffs. All teams compete in a

single round robin in the regular season, and the top ranked teams enter the playoff and compete

in elimination. As of the 2021 spring season, 17 teams were competing for the LPL championship.

The playoff champion receives 40% of the prize pool, which was 3.5 million RMB ($0.54 million,

based on $1=6.5 RMB) in the 2019 summer season.

The tournament schedule and hosting cities are predetermined and published weeks before the

season starts. The spring season starts in January and the summer season in June; each lasts about

10 weeks. Each season is jointly hosted by three to five cities. By 2021, 11 cities had hosted the

tournament; Shanghai is the most frequent host city. Appendix Table A1, Columns (1) and (2)

tabulates the number and frequency of matches hosted by different cities, respectively. Columns

(3) and (4) tabulates the number and frequency of home cities of all LPL teams in our sample

period. Shanghai is also the most frequent home city (for 12 out of 27 teams).

8. LoL operates 12 regional professional tournaments internationally. The top four are China, North America,
Europe, and South Korea.
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2.2 Data Source

LPL Match Data We obtain the administrative database of match statistics for all LPL tour-

nament matches from the official LPL website.9 The database covers the universe of all 2, 638

LPL matches held in 11 different cities across 561 match dates from Jan 2017 to July 2021.10 The

publicly available match statistics encompass two sets of information: (i) post-match performance

statistics for the competition phase and (ii) pre-match statistics on player and champion selection

from the preparation phase. Post-match statistics are recorded for 508 professional full-time play-

ers (all males) from 27 teams.11 Available post-match variables include win or loss, the number of

kills (landing the last hit on a fallen rival champion) and assists (contributing to damaging a fallen

rival champion); the amount of gold earned (a composite measure of in-game scores, earned by

defeating rival champions and neutral minions); match duration; and a set of other match-specific

performance metrics. Appendix Figure B2 depicts an auto-generated summary of key performance

measures after a typical match. Detailed variable definition and game mechanics are presented in

Appendix E.

We also obtain four pre-match variables from the preparation phase: decision time (i.e., the

amount of time each player takes to finalize their choice of champion), the frequency of pick-and-

switch before the final decision, the roster of five active players, and each player’s final choice of

champion by the end of the preparation phase. We manually collect the first two variables from

video clips of each LPL match,12 and obtain the latter two from the official match database. These

variables enable us to assess a team’s pre-match strategic decision-making.

Air Pollution Air pollution is the world’s largest environmental health threat and accounts for

7 million deaths around the world each year (Lelieveld et al., 2015). Particulate matter—especially

particles below 2.5 microns in diameter (PM2.5)—are the main air pollutants and pose the greatest

threat since these tiny particles penetrate deep into the lungs and bloodstream and affect the

9. See https://lpl.qq.com/es/schedule.shtml (in Chinese). Accessed on 2023-09-01.
10. Our sample excludes online matches due to the COVID-19 pandemic in the spring season of 2020.
11. Some teams were disbanded and new teams added to the league over this period. Moreover, on rare occasions,

teams may change ownership and team names. We treat these teams as new additions after an ownership change.
12. We recruited a team of 20 college students to watch the video clip of each LPL match and note down the

decision time and the frequency of pick-and-switch for each player in the preparation phase. We exclude 12 matches
due to incomplete video recording of the preparation phase.
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respiratory, vascular, and brain systems (Block et al., 2012; Peeples, 2020).

Data on PM2.5 and other major air pollutants are obtained from the China National Environ-

mental Monitoring Center (CNEMC). We retrieve hourly concentrations of PM2.5 for all hosting

stadiums from 2017 to 2021 based on the nearest national monitoring stations.13 We then match

the hourly level of PM2.5 to each match in our LPL database. PM2.5 is the most important air

pollutant in China. It can easily penetrate buildings (Huang et al., 2007; Chen and Zhao, 2011;

Nadali et al., 2020) and cannot be effectively reduced by standard air-conditioning systems (Mac-

Neill et al., 2012). The indoor-outdoor ratio of PM2.5 commonly ranges 0.6 to 0.9 and can be close

to one in indoor environments with frequent air exchange, such as in stadiums with open doors and

windows (Chen and Zhao, 2011). We use the outdoor level of PM2.5 to proxy for indoor exposure

to primary air pollutants during the match. The average level of match-hour PM2.5 is 36 µg/m3

during our sample period, with a maximum level of 258 µg/m3 and a SD of 28 µg/m3. The average

PM2.5 level was more than twice the WHO guideline of 15 µg/m3 for daily exposure (WHO, 2021).

The level of PM2.5 exhibited substantial variations across cities (Appendix Figure B3) and

over time, ranging from 1.3 to 248.5 µg/m3 over the sample period. The 50th, 75th, and 90th

percentiles of the change in mean PM2.5 concentration from one match day to the next are −0.95,

13.2, and 29.6 µg/m3, respectively; those of the change from one match to the next within the

same day are 0.47, 2.95, and 6.40 µg/m3, respectively. Figure 1 presents hourly variations in

PM2.5 in Shanghai (the most frequent host city) over the sample period (Panel A) and over a

typical month in the regular season (Panel B). The figure demonstrates substantial fluctuations in

the level of PM2.5 across dates as well as across matches within the same day. The high-frequency

fluctuations of PM2.5 provide a source of exogenous variation to identify the causal impact of short-

term pollution exposure on teams’ competitive performance in LPL tournaments independent of

any socioeconomic or weather-related factors.

We also retrieve weather information from the China Meteorological Data Service Center and

use the inverse-distance weighting algorithm to convert weather variables from station to city

level. These variables include temperature, precipitation, sunshine, humidity, wind speed, and an

13. Because all hosting stadiums are located in the city center, we are able to locate at least one pollution monitoring
station within a 5 km radius for more than 95% of stadiums.
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indicator for bad weather.14

Summary Statistics The analytical sample contains all professional LPL tournament matches

from the spring season of 2017 to the summer season of 2021. The sample contains 26, 380 match-

player observations and, equivalently, 5, 276 match-team observations from 2, 638 matches in the

official database. We exclude 54 observations, or 1% of the sample, due to missing hourly PM2.5

records from monitoring stations, resulting in an analytical sample of 5,222 observations.

Table 1 presents summary statistics of each team’s competitive performance during the compe-

tition phase (Panel A), pre-match statistics during the preparation phase (Panel B), and the level

of main air pollutants during the match hour (Panel C).15

In the competition phase, the average winning probability is 0.5 with a standard deviation of

0.5 for all teams, as expected. A match lasts 33 minutes on average. Teams on average score

12.7 kills and 30.0 assists per match. We also compute the performance metrics per 10 minutes as

measures of teams’ efficiency in competitive performance. Teams score 3.9 kills and 9.2 assists per

10 minutes. There is substantial heterogeneity in performance across teams and players. Figure 2

depicts the histograms of kills and assists per match at both team and player level. Panel A shows

that top-performing teams score more than 30 kills in a match, while the bottom 10% of teams

score below 5. Similarly, the distribution of team assists per match is also right-skewed (Panel B).

At player level, the distributions of kills and assists per match—as depicted in Panels C and D,

respectively—are more widespread and right-skewed than at team level.

In the preparation phase, a player takes an average of 17.7 seconds to finalize his choice of

champion (the time limit is 30 seconds), and changes the initial choice by 0.64 times before the

final decision. Each team has one most frequently used lineup that represents the highest level of

experience and teamwork; each player has a set of six most preferred and frequently used champions.

A team has an average probability of 0.31 of choosing a less frequently used lineup, and a player

has a probability of 0.09 of choosing a less frequently used champion. The sample size for decision

14. The indicator for bad weather equals to one if any of the weather variables—temperature, precipitation,
sunshine, humidity, and wind speed—exceeds 90% percentile cutoff of sample values.

15. Appendix Table A2 presents summary statistics at player level. In a subsequent discussion, we present es-
timation results at team level and relegate corresponding results at player level to the appendix. All results are
consistent.
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time and the frequency of pick-and-switch is 4% smaller than that of performance metrics from the

official database because video recording were missing or incomplete for some matches or failed to

show players’ decision process due to broadcasting issues.

As for exposure to air pollution during the match hour, the average concentrations of PM2.5,

PM10, and AQI were 35.7, 55.0, and 59.4 µg/m3, respectively. The average pollution exposure in

LPL tournaments was higher than the WHO safety standard (the 24-hour standard is 15 µg/m3

for PM2.5 and 45 µg/m3 for PM10 (WHO, 2021)). In particular, about 21% of matches were held

in a highly polluted environment considered to be “very unhealthy” (PM2.5 ≥ 50µg/m3).

3 Main Results

3.1 Average Impact of Air Pollution in Competition

We start by estimating the average effect of air pollution on team performance and match out-

comes in the highly cognitive-intensive competition. We exploit the plausibly exogenous variation

in PM2.5 at the hour of the match to identify the causal impact of air pollution on each team’s

competitive performance. Specifically, we estimate the following specification:

Yijct =α+ βPM2.5ct + TeamPairij +MatchTypect

+ City × Y ear ×Monthct +DoWt + PHt + µijct. (1)

Yijct measures the competitive performance of team i against rival j in a match held in city c at

time t, which includes an indicator of win or loss, the number of kills, the number of assists, the

amount of gold earned, and corresponding metrics per 10 minutes. PM2.5ct measures the match-

hour level of PM2.5 (in unit of 10 µg/m3),16 which is our primary measure of air pollution. We

include a comprehensive set of fixed effects (FEs): team pair FEs (TeamPairij); match type FE

(MatchTypect)—i.e., whether the match is regular season or playoffs; city-by-year-by-month FEs

(City × Y ear ×Monthct); day-of-week FEs (DoWt); and public holidays FEs (PHt).
17 Finally,

16. For ease of interpretation, we measure the level of PM2.5 in unit of 10 µg/m3 throughout our analyses.
17. Note that all independent variables in Equation (1) are exogenous to a team’s choices. We do not control

for player-specific factors, such as the lineup of active players and their chosen champions, because these are choice
variables that could be part of a team’s responses to pollution exposure as well as to the rival team’s strategy. We
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µijct is an idiosyncratic error term. We cluster standard errors at team-by-season level to allow for

autocorrelation of team performance across matches in the same season.

Estimation results are reported in Table 2. The most notable and seemingly counterintuitive

pattern is that a higher concentration of PM2.5 has a small and statistically insignificant effect on

match outcome, measured by a team’s win or loss (Column 1) and the set of team’s performance

metrics, including team’s total kills (Column 2), total assists (Column 3), total gold earned (Column

4), and the corresponding performance metrics per 10 minutes (Columns 5 to 7). This pattern of “no

average effect” is similarly documented when we estimate Equation (1) at player level (see Appendix

Table A3). This pattern stands in contrast to the host of large adverse impacts of air pollution on

labor productivity, cognitive functioning, and athlete performance commonly documented in prior

studies on air pollution (see, e.g., Dominici et al., 2014; Chang et al., 2016, 2019; Archsmith et al.,

2018; He et al., 2019; Park et al., 2020; Adhvaryu et al., 2022; Park, 2022; Künn et al., 2023). An

explanation is clearly warranted.

We hypothesize that air pollution leads to opposite effects on the two rival teams that cancel

out, so that the average effects are mixed in sign, small in magnitude, and statistically insignificant.

In such a scenario, one side of the competition would benefit from the more severe air pollution

while the other side suffers. In addition, air pollution may substantially reduce or widen the gap

between opposing teams, depending on which side of the competition air pollution benefits. We

proceed to investigate the distributional impact of air pollution in competition.

3.2 Distributional Impact of Air Pollution in Competition

Graphical Evidence We first explore the graphical pattern of the relationship between teams’

performance metrics and pollution exposure, and show that the direction of the relationship depends

critically on a team’s relative standing against the rival in a matchup.

We find a clear visual pattern that the direction of the relationship between a team’s performance

and its pollution exposure depends on whether it is stronger than its rival in the matchup. Figure 3

depicts the scatter plot of the team’s kills and assists per 10 minutes against its PM2.5 exposure in

exploit the choice of players and champions as dependent variables to test for the impact of air pollution on a team’s
strategic interactions in Section 5.3.
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two separate cases: when a team competes against a stronger rival and when it competes against

a weaker one. We define a team as stronger than its rival if its average winning rate in a given

tournament season is higher than its rival’s. Panels A and B plot kills and assists, respectively.

The figures show that the stronger team performs better in both kills and assists in a more polluted

environment, whereas the weaker team performs significantly worse.

This pattern is consistent when we fix a group of medium-ranked teams (in terms of average

winning rates) and plot their performance against stronger rivals (ranked above the 75th percentile)

and against weaker rivals (ranked below the 25th percentile). Figure 3, Panels C and D, show that

air pollution enhances the performance of these medium teams against weaker rivals, and impairs

their performance against stronger rivals. Overall, Figure 3 demonstrates that the relative standing

of a team with respect to its rival determines the impact of air pollution on match outcomes.

Baseline Specification We now formally establish that air pollution has a large, distributional

impact on a team’s competitive performance, which crucially hinges on whether the team is stronger

or weaker than its rival in a given matchup. As suggested by the graphical evidence, the effect of

air pollution on a team’s equilibrium outcomes may depend on its relative standing with respect

to the opposing team in a matchup. We estimate the distributional effects of PM2.5 on match

outcomes with respect to a team’s relative standing against its rival using

Yijct =α+ βPM2.5ct + γPM2.5ct ×Rel.Strongij + TeamPairij +MatchTypect

+ City × Y ear ×Monthct +DoWt + PHt + µijct. (2)

Our key variable of interest, the stronger-than-rival dummy Rel.Strongij , equals one if team i is

stronger than its rival j in a matchup and zero otherwise. We define a team’s strength relative

to its opponent based on a competitiveness index. We aim to construct a measure for a team’s

baseline competitiveness by partialling out environmental and match-specific factors. Specifically,

we measure a team’s competitiveness index by regressing the following equation in the sample of
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regular-season matches:

Winijpct = δi + ηj + δi × ηj + Playerp + Champh +Roler + βPM2.5ct +MatchTypect

+ City × Y ear ×Monthct +DoWt + PHt + µijpct, (3)

whereWinijpct is the dummy of win, δi and ηj are self-team and rival-team fixed effects, respectively,

and the regression is estimated at player level. The estimate of δi measures team i’s (standardized)

baseline winning rate across all matches after removing the influence of competing against different

rivals across matches and other match-specific factors, such as the choice of players (Playerp),

champions (Champh), the player’s role on the team (Roler),
18 pollution exposure, and unobservable

city and time factors (City×Y ear×Monthct, DoWt, and PHt). The underlying premise is that if a

team has higher innate ability than its rival, it outperforms its rival on average across regular-season

matches.19 After obtaining the fitted value for all δi’s, we define Rel.Strongij = 1 if δ̂i > δ̂j—i.e.,

team i has a competitive edge against team j.

We also adopt two alternative methods to compute a team’s competitiveness index. One is

based on a more parsimonious specification to estimate team FEs (δi) at team level: Winijct =

δi+ηj+MatchTypect+Cityc+Y eart+Montht+µijct. The other is a team’s average winning rate

in all regular-reason matches. The competitiveness indices from these three methods are highly

correlated and the corresponding index-based rankings of teams are almost identical (see Appendix

Table A4).

With the relative strength of a team to its rival defined in each match, we estimate the baseline

estimation model Equation (2). The coefficients of interest are β and γ: The former measures the

effect of a 10 µg/m3 increase in PM2.5 on the competitive performance of the weaker team in the

matchup, and the latter measures the difference in the effect of air pollution on the stronger team

relative to the weaker. Positive estimates of β and γ both indicate better competitive performance.

The sign of γ underscores the effect of air pollution on the relative performance of opposing teams.

Two scenarios may occur: Higher air pollution balances the playing field and reduces the gap

18. Each of the five players in a team has a specific role. See Appendix Section E.2.3 for details.
19. The regular season is a round-robin tournament in which each team competes against all other teams exactly

once.
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between teams, which implies that β > 0 and γ < 0, or the opposite—higher air pollution tilts the

odds in the stronger team’s favor and magnifies the gap between teams, which implies that β < 0

and γ > 0.

Baseline Estimation Results Table 3 presents baseline results based on Equation (2), which

delineate a clear opposite pattern: When a team is weaker in a matchup, a 10 µg/m3 increase

in PM2.5 concentration significantly reduces its performance in kills, assists, and gold earned, and

results in a statistically significantly 1 pp drop in winning probability. In contrast, the stronger team

experiences a statistically significant increase in kills, assists, and gold earned, and a (mechanically)

1 pp increase in winning probability. We refer to such an opposite impact on opposing teams as

the distributional effect of air pollution.

The estimated distributional effect on a team’s winning probability is economically meaningful:

A 1 SD increase in PM2.5 (27.7 µg/m3) creates an additional 5.54 pp gap in winning probability

between teams—which would set two teams apart by 12.3 percentiles in the season’s team rankings,

holding pollution exposure for other teams constant.20 Had air quality deteriorated during all

matches in the tournament, the tournament would be more lopsided and teams’ average winning

rates more polarized.

The above results indicate that air pollution widens the performance gap between teams. We

quantify the performance gap more directly as the difference in kills, assists, and gold earned

between the stronger and weaker teams. Appendix Table A5 estimates the effect of air pollution

on this measure of performance gap at the match level and shows that air pollution significantly

enlarges the gap in these three dimensions of teams’ competitive performance.

In addition, air pollution’s the gap-widening effect grows stronger if the underlying gap in rivals’

strength becomes larger. In contrast, when two teams are on par, the effect of air pollution becomes

negligible. We estimate a specification similar to Equation (2) by replacing the dummy Rel.Strongij

with a continuous measure of the gap in innate competitiveness between teams, Gapij = δ̂i − δ̂j :

Yijct =α+ βPM2.5ct + γPM2.5ct ×Gapij + TeamPairij +MatchTypect

20. Given that the range of average winning probabilities in the data is between 20 and 65 pp, an additional 5.54
pp gap in winning probability corresponds to 12.3 (= 5.54/(65− 20)) percentiles in rankings.
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+ City × Y ear ×Monthct +DoWt + PHt + µijct. (4)

Two remarks are in order. First, the coefficient of the interaction term, γ, measures the incremental

effect of air pollution on a team’s performance if a team’s competitiveness gap widens slightly.

Table 4 shows that the estimates of γ are all positive and statistically significant, which suggests

that teams with a larger advantage in baseline competitiveness over a rival perform significantly

better in a more polluted environment.

Second, the coefficient of β measures the effect of air pollution in the scenario in which two

teams are on par—i.e., Gapij = 0 in Equation (4). Table 4 shows that the estimates of β are zero

and statistically insignificant, which implies that air pollution no longer affects match outcomes for

homogeneous rivals.

We further illustrate the lack of any effect of air pollution on homogeneous rivals in Figure 4.

We define three dummies for a team’s strength—ranked at the top, middle, or bottom one-third

in teams’ competitiveness index δ̂—and generate 3×3 mutually exclusive groups of self-versus-rival

team pairs. We estimate the effect of air pollution in each pair. The figure plots the 3×3 matrix of

coefficient estimates and shows that when a team competes against a similarly ranked rival—i.e.,

the diagonal of the coefficient matrix—the effect of air pollution on the team’s winning probability

is always zero and statistically insignificant. The other entries of the 3×3 matrix show consistently

that, when two teams’ baseline competitiveness differ by a greater extent, the gap-widening effect

of air pollution on team’s performance grows even greater.

3.3 Additional Evidence of Air Pollution Killing Competition

Thus far, we have found that air pollution has distributional effects on opposing teams in

competition: Air pollution magnifies the underlying gap between rivals, and its effect is muted

when rivals are on par. Together, these results suggest that the balance of a match will be more

tilted and the whole tournament more lopsided in a more polluted environment. Put differently,

air pollution kills the game by substantially reducing uncertainty and suspense. We provide further

evidence.

First, air pollution raises the likelihood of a landslide victory for the stronger team. We exploit
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a specific LOL game mechanism, in which the whole match’s most exciting and most highlighted

“battle-of-the-game” moment occurs when a team kills multiple rival players and in some cases,

even wipes out the entire rival team. Such moment resembles a 20-0 scoring frenzy in basketball or

a hitless innings streak in baseball, which triggers a huge morale boost for the winning side. Such

a moment generally occurs in the second half or at the end of the match, usually followed by a

landslide victory for the team that achieves multiple kills or a wipe-out.21

Appendix Table A6 shows that a 10 µg/m3 increase in PM2.5 levels significantly increased

the likelihood of multiple kills for the stronger team by 1 pp relative to the weaker team. This

higher chance of achieving multiple kills can explain about 52.6% of the gap in the winning rate

for the stronger team (52.6%=1/1.90, see Column 1 of Table 3). Consistently, both the frequency

of multiple kills and the share of multiple kills in total kills increased statistically significantly for

the stronger team under more severe air pollution.

Second, air pollution reduces the unpredictability of the match. We predict the match outcome

(win or loss) based on the ranking of team’s competitiveness index (see Equation 3). Specifically,

we define five quantiles of the competitiveness index and predict a team to be the winner of the

match if it has a higher quantile than the rival team. We then define an indicator of prediction

accuracy if the predicted outcome is the same as the actual outcome. We regress this accuracy

indicator on the level of PM2.5 in the baseline specification.

Appendix Table A7 shows that higher PM2.5 significantly increases the prediction accuracy.

Column 1 shows that a 10 µg/m3 increase in PM2.5 increases the prediction accuracy by 1.2%

against a sample mean accuracy of 60.8%. In addition, Column 2 shows that the suspense-reducing

effect of air pollution becomes more pronounced when the underlying gap in teams’ competitiveness

becomes greater. Column 3 shows that air pollution has no effect on prediction accuracy when two

teams are on par. These patterns are consistent with our finding in Table 4 that air pollution

widens the performance gap between teams and has no effect when two teams are on par. The

results are robust in Columns 4 to 6 when we re-predict the match outcome directly using teams’

21. The LPL game mechanics facilitates a victory by multi-kills or wipe-out. As a match progresses, fallen champions
have longer respawn times. Consequently, when multiple players in a team are defeated or a whole team is wiped
out, their home base is left undefended and the opposing team can easily capitalize this window of opportunity and
end the game swiftly. The multi-kills and wipe-out moment of a match is always highlighted in the live stream and
serves as a key element in boosting viewership and sponsorship for LPL.
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competitiveness index as opposed to the quantiles of the index.

Lastly, air pollution reduces the intensity of competition, measured by the summed performance

metrics of both teams. Appendix Table A8 shows that air pollution reduces the total kills, assists,

and damages dealt to all champions during a match, as well as the metrics per 10 minutes. This

demonstrates that while air pollution may have a positive distributional effect on the stronger

team’s performance, it ultimately diminishes the overall performance of both teams. This obser-

vation is consistent with the extensive literature highlighting the adverse effects of air pollution on

individual’s cognitive function and labor productivity (see, e.g., Archsmith et al., 2018; Kahn and

Li, 2020; Graff Zivin and Neidell, 2012; Chang et al., 2019; Borgschulte et al., 2018).

In summary, we have shown that air pollution gives the relatively stronger team a competitive

edge against its rival and significantly reduces the uncertainty of the game. The policy implications

are twofold. If the purpose of the tournament is selection efficiency—i.e., to select and reward the

most competitive team—then a higher level of air pollution would tilt the balance of the game in

favor of the stronger team in each match and eventually the strongest team of the tournament.

However, if the purpose of the tournament is to create more suspense—which is critical for the

eSports industry to increase viewership and game revenue—then a higher level of air pollution is

more likely to decrease suspense and defeat this purpose.

4 Robustness Checks

In this section, we conduct a comprehensive set of analytical tests to justify our identification

assumption and validate the robustness of the baseline results. In the next section, we proceed

to discuss the mechanisms that drive the distributional impact of air pollution in competition.

Interested readers can move on to Section 5.

Threats to Causal Interpretation Although the match schedule in tournaments is predeter-

mined and the hourly variation in PM2.5 across matches is plausibly exogenous, there remain

several potential threats to a causal interpretation of the estimated effects of air pollution.

First, tournament hosts may have incentives to deliberately arrange certain matchups according

to last-season records—e.g., a rematch between last-season championship contenders—on weekends
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or public holidays in order to increase viewership and sponsorship. Air pollution levels may also

be systematically higher or lower during weekends and/or public holidays. This may create a

spurious correlation between match outcomes and the level of air pollution. Therefore, in our

baseline specification (Equation 2), we have controlled for day-of-week FEs and public holiday

FEs. Additionally, we show that match outcomes between each pair of teams from the last season

are uncorrelated with the pollution exposure during current-season matches of the same pair of

teams (Appendix Table A9 and Appendix Figure B4). Additional analyses, discussions, figures,

and tables are relegated to an online appendix.

Air pollution levels can vary throughout the day (Figure 1, Panel B), and players’ cognitive

performances might also fluctuate based on the hour of the match. For instance, players may

perform better in the morning when they are well-rested, compared to during late-night matches,

and such pattern may be more (or less) pronounced for higher-ability players. Consequently, the

gap in performance between stronger and weaker teams might systematically differ based on the

match hour. This systematic difference could introduce confounders in our identification of the

causal effect of air pollution. To address this, we include hour-of-day FEs in the estimation as a

robustness check. Essentially, we utilize the variation in PM2.5 levels between the same pair of

teams, in the same city, year, month, and hour of the day, but on different days of the month to

establish the causal link between pollution exposure and players’ performance. Such variation of

PM2.5 originates from a limited number of matchups in our sample. Considering that tournament

schedule is determined quasi-randomly, it is uncommon for matchups between a specific pair of

teams to be scheduled at the same hour across different dates. Nevertheless, Appendix Table A10

shows that estimation results are consistent with the baseline, suggesting that our identification in

the baseline specification is largely based on the exogenous variation of air pollution independent

of hour-of-the-day fluctuations.

Despite controlling for city-by-year-by-month FEs in the baseline specification, there might

still exist unobservable city-specific, date-specific factors—e.g., local city social events, unexpected

pre-match traffic jams—that may affect a player’s mood and health before or during the match

and correlate with the local pollution level. These unobservables may create omitted variable

bias. We deal with such city-by-date confounding factors by including city-by-date FEs in the
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baseline regression. This eliminates the influence of any socioeconomic or weather factors that might

vary across cities and match dates. We exploit only the within-team-pair, within-city, within-date

variations in PM2.5 across match hours for identification. However, with only a subset of variations

in PM2.5, the effect it identifies does not represent all teams and is less precisely estimated. It is

reassuring that results of this restrictive specification are consistent with our baseline (Appendix

Table A11).

We also rule out the influence of a dynamic discouragement effect that might arise between

sequential tournament matches. Previous studies find that losing an earlier match in the tournament

series may negatively affect players’/teams’ performance in later matches, which creates a dynamic

discouragement effect (Malueg and Yates, 2010; Liu et al., 2022). Pollution exposure during earlier

matches may have dynamic effects on later matches. In LPL tournaments, each match series is

either best of three (regular season) or best of five (playoffs). We create a set of dummies to interact

the current match order in a given match series with the dummy of win or loss of earlier matches.

We reestimate the baseline regression by controlling for this set of dummies to control for potential

pollution-induced discouragement effects. Results remain robust (Appendix Table A12).

Placebo Tests We conduct two placebo tests. First, we randomly assign the level of PM2.5

across matches held in the same city. The underlying premise is straightforward: A team’s per-

formance should not vary systematically with falsely generated pollution exposure. Using this

randomly generated PM2.5 variable, a placebo test is conducted based on Equation (2) and re-

peated 1, 000 times. Figure 5, Panel A plots the distribution of the estimated placebo coefficients

(γ) from the 1, 000 runs along with the benchmark estimate (solid line). As shown in the figure, the

placebo coefficients are centered at zero and the benchmark coefficient of 0.019 lies outside the 99%

confidence interval of placebo coefficients. Second, we conduct a similar placebo test by randomly

assigning the level of PM2.5 across matches and across cities. We repeat this practice 1, 000 times

and plot the distribution of the estimated coefficients in Panel B. Again, the benchmark coefficient

is significantly different from placebo coefficients. To summarize, the placebo tests demonstrate

that a team’s performance is only affected by exposure to PM2.5 during the actual match, and not

by counterfactual variations in pollution across time or location.
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Controlling for Weather Conditions One potential concern is that the fluctuation in weather

conditions may affect individuals’ moods and health (Berry et al., 2010; Cunningham, 1979) and

also correlate with the variation in outdoor air pollution. Despite the fact that all hosting stadiums

in our sample are fully covered and air-conditioned, fluctuations in weather before the match, such

as heavy rain or extreme heat, may still have residual impacts on players’ performance. To isolate

the impact of air pollution on players’ performance from weather-related factors, we control for a

rich set of weather conditions, including flexible bins of temperature (as is standard in the literature;

see, e.g., Deschênes and Greenstone, 2011), precipitation, sunshine, humidity, and wind speed, as

well as an indicator for bad weather (see Footnote 14). The results are almost identical to the

benchmark (Appendix Table A13), which implies that weather-related factors do not affect our

estimation of the causal effect of air pollution on players’ and teams’ performance.

Player-level Results We validate baseline results at player level. We estimate Equations (2)

and (4) at player level and control for a set of player-specific factors—i.e., player FEs, champion

FEs, and role-of-team FEs—and cluster standard errors at player-season level. The results are

consistent (see Appendix Tables A14 and A15): All coefficients are quantitatively similar to those

in team-level estimation, and are estimated more precisely due to the larger sample size.

Alternative Measures of Air Pollution We check the robustness of the distributional effects of

air pollution by adopting alternative measures of air pollution: PM10, SO2, and AQI. PM10 is the

second most important source of airborne PM in China (the first being PM2.5) and can penetrate

indoors.22 SO2 is the most important gaseous pollutant and AQI combines the concentration values

of all six main air pollutants. Appendix Table A16, Columns (1) to (3), present the estimation

results using PM10, SO2, and AQI, respectively, as measures of air pollution. The results depict a

consistent pattern of the distributional effects of air pollution on teams’ competitive performance.

It is noteworthy that a specification based on ozone (O3) can be used as a placebo test. Out-

door ozone is formed mainly under sufficient sunshine and heat and decomposes naturally and

quickly in sheltered and cool indoor environments (Weschler, 2000), which makes staying indoors

22. PM10 has an indoor-outdoor ratio that commonly ranges from 0.3 to 0.8 (Chen and Zhao, 2011; Nadali et al.,
2020).
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an effective means of reducing ozone exposure. Because all tournament stadiums are covered and

air-conditioned, we expect the variation of outdoor ozone to have no effect on team performance or

match outcomes. The results in Appendix Table A16, Column (4) confirm our expectation. Sim-

ilarly, Chang et al. (2016) find that higher outdoor PM2.5 lowers productivity for indoor workers

at a pear-packing plant, but outdoor ozone has no effect on this indoor plant.

Pre-match and Post-match Exposure to Air Pollution We check whether the level of air

pollution before or after the actual match day affects a team’s competitive performance. Appendix

Table A17 shows that after controlling for the concurrent level of air pollution during the match,

fluctuations in air pollution 1, 3, 5, and 7 days before/after the match day do not have discernible

effects on match outcomes. In other words, match-hour exposure to air pollution is the primary

factor that affects a player’s and team’s competitive performance.

Nonlinear Effects of Air Pollution Last, we consider the nonlinearity of pollution’s impact

on teams’ competitive performance. We estimate a dose-response relationship by replacing the

continuous PM2.5 term in Equation (2) with evenly spaced bins of PM2.5 levels (in 25 µg/m3).

This allows for a flexibly nonlinear relationship between a team’s competitive performance and

PM2.5 levels. Appendix Figure B5 plots the estimated nonlinear impacts on the stronger team

and weaker team in Panels A and B, respectively. The 0-10 µg/m3 bin is the omitted category.

Appendix Figure B5, Panel A shows that the performance-enhancing effect of pollution on the

stronger team is small when the concentration of PM2.5 is lower than 50 µg/m3; rises moderately

and flattens out when PM2.5 concentration rises from 50 to 100 µg/m3, then rises sharply and

is estimated to be statistically significant when the concentration exceeds 100 µg/m3.23 Panel B

shows an almost symmetrical and opposite pattern for the weaker team. Regression results are

reported in Appendix Table A18.

23. A similar pattern of nonlinear dose responses to air pollution is commonly observed in epidemiological studies
(see, e.g., Kampa and Castanas, 2008) and economics studies (see, e.g., Chang et al., 2019).
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5 Mechanism

Thus far, we have presented robust evidence that a higher level of air pollution severely hampers

the performance of the weaker team in competition but improves that of the stronger team, and

leads to an elitist competition outcome. In this section we explore the factors that give rise to this

pattern of the distributional impact of air pollution.

5.1 Heterogeneous Impact Based on Relative Strength

The first and foremost factor is that air pollution may have more adverse health impacts on

the weaker team. Prior research mostly assesses the heterogeneous health impacts of air pollution

based on certain personal characteristics, such as age, gender, ability, and experience (Zhang et al.,

2018; Guo and Fu, 2019; Graff Zivin and Neidell, 2012; Chang et al., 2016, 2019). We present

evidence that the distributional effect of air pollution depends on a team’s relative strength with

respect to its rival in a specific matchup rather than its own absolute strength. Importantly,

such interdependence would not arise in settings of independent decision-making. Specifically, we

estimate

Yijct =α+ βPM2.5ct + γPM2.5ct ×Rel.Strongij + ηPM2.5ct ×Abs.Strongi + TeamPairij

+MatchTypect + City × Y ear ×Monthct +DoWt + PHt + µijct. (5)

Abs.Strongi indicates a team’s absolute strength, which equals one if team i’s competitiveness

index is higher than half of all teams (see Section 3.2) and zero otherwise. Rel.Strongij equals

one if team i’s competitiveness index is higher than its rival j and zero otherwise, the same as in

Equation (2).

Table 5 reports estimation results. The estimated coefficients of γ are quantitatively similar to

the benchmark in Table 3 and statistically significant. The estimated coefficients of η, however,

are smaller in magnitude and generally insignificant. For example, in terms of winning probabil-

ity (Column 1), for a team that is absolutely weak and weaker than its rival (Abs.Strong = 0

and Rel.Strong = 0, the reference group), a 10 µg/m3 increase in PM2.5 significantly reduces
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its winning probability by 1.1 pp. In comparison, a team that is absolutely weak but stronger

than its rival (Abs.Strong = 0 and Rel.Strong = 1) gains a relative 1.7 pp increase in winning

probability. However, a team that is absolutely strong but weaker than its rival (Abs.Strong = 1

and Rel.Strong = 0) performs similarly to the reference group when air pollution increases. The

same pattern holds for performance measures of kills, assists, and gold earned (Columns 2-4) and

per-10-min performance measures (Columns 5-7).

Overall, Table 5 demonstrates that the distributional effect of air pollution is mainly driven

by the relative difference in a team’s strength against its rival rather than the level of its own

absolute strength. This pattern is consistent in a similar, highly cognitive-intensive competitive

setting in German national chess tournaments. Künn et al. (2023) investigate the impact of indoor

air pollution on top chess players’ errors in play and find a larger adverse impact on the weaker

player, whose ex ante national chess ranking is lower than their opponent; in contrast, air pollution

has no effect on the stronger player. This relative-strength dependent heterogeneous impact of air

pollution enriches our understanding of the health channel that underlies the cognitive impacts

(Aguilar-Gomez et al., 2022). Results from Künn et al. (2023) and our study confirms that how

air pollution affects a player’s cognitive functioning in competition differs from a setting in which

the outcome depends only on a single player’s ability and choice.

5.2 Pollution Acclimation

Teams who frequently train in cities with high levels of air pollution might develop resilience

to the adverse effect of air pollution during tournament matches.24,25 Similarly, teams who train

in cities with higher levels of air pollution than their rival team may develop more such pollution

acclimation. In addition, teams competing in their home city might be accustomed to the local air

pollution levels and thus less affected by fluctuations in air pollution during matches played there.

Next, we show that the heterogeneous impact of air pollution we identify is not alleviated by the

24. We thank an anonymous referee for suggesting investigation of acclimation impacts of pollution exposure.
25. Qin et al. (2022) find evidence suggesting that professional football players are less affected by the adverse

impacts of air pollution if their home city has a higher average pollution level relative to the pollution level during
the match. To the best of our knowledge, there has been no evidence on the existence of a pollution acclimation
effect in a highly cognitive-intensive environment.
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aforementioned potential pollution acclimation effects.26

We first show that our main findings are robust to the potential pollution acclimation for teams

from cities with a higher average air pollution level than the host city. We introduce an indicator

variable (HomeAcclimationict) for team i whose home city has a higher average air pollution

level than the average pollution level in host city c on the match date t.27 We also include its

interaction term with the match-hour PM2.5 level. Appendix Table A19, Panel (A) reports the

estimation results, which show that the acclimation effects, represented by the coefficients of the

interaction term, are small in magnitude, mixed in sign, and statistically insignificant for various

dimensions of match performance. Moreover, Panel (B) shows that our key coefficient of interest,

γ, in Equation (2)—which quantifies the distributional effect of air pollution—remains similar in

magnitude and statistical significance to the baseline results (e.g., 0.018 vs. 0.019 for the winning

rate, as shown in Table 3) after controlling for the pollution acclimation effect.

We then assess the role of relative pollution acclimation between rival teams. We define an

indicator variable (Rel.HomePollutedij) for team i whose home city has a higher average air

pollution level than the rival team j. We also include its interaction term with the match-hour

PM2.5 level. Appendix Table A20 reports the estimation results. Similarly, the coefficients of the

interaction terms are small and statistically insignificant.

Third, we investigate the possibility of a home advantage. Teams competing in their home

city may be more adapted to the local air pollution level and variations. We define an indicator

variable (HomeAdvantageict) for team i whose home city is the host city c on the match date t.

We also include its interaction with the match-hour PM2.5 level. Appendix Table A21 reports the

estimation results. Again, the coefficients of the interaction term are generally negative, small in

magnitude, and statistically insignificant for various measures of team performance. The estimates

of the distributional impact of air pollution, γ, remain similar to the baseline.

In summary, results presented in Appendix Tables A19 to A21 demonstrate that pollution

26. It is important to note that pollution acclimation serves as a potential explanation for our baseline findings,
rather than a confounding factor for causal inference.

27. We collect information on the homebase city for all 27 LPL teams in our sample by first going through the
official website of each LPL team. If a team has no official website, we obtain information on their registration city as
homebase city from Baidu Baike (China’s Wikipedia). Appendix Table A1, Columns 3 and 4 present the distribution
of homebase cities.
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acclimation effect is unlikely to mitigate the observed distributional impact of air pollution on

team performance. This finding is consistent with that presented in Table A17 and suggests that

the distributional impact is primarily driven by instantaneous pollution exposure at the hour of

the match rather than prior pollution exposure.

5.3 Strategic Interactions

Strategic interactions are an essential component in competition. Players may respond endoge-

nously to the cognitive impact of air pollution on their performance as well as to their opponent’s

competitive responses to air pollution. We therefore expect that air pollution may affect team’s

strategic decision-making.

We investigate how air pollution affects teams’ strategic decision-making. We first provide

suggestive evidence that players are aware of the level of air pollution, which is a necessary condition

for air pollution’s impact on strategic interactions. We then exploit a unique LPL setting to confirm

the impact of air pollution on teams’/players’ strategic decision-making. Lastly, we build a stylized

contest model to highlight the role of strategic interactions in competition and elaborate on how

air pollution affects competitive outcomes through strategic interactions.

Awareness of Air Pollution and Its Health Effects A necessary condition for players to

respond strategically to exposure to air pollution is that they are aware of air pollution and its

health costs. In contemporaneous China, there is extensive evidence that the public is aware of air

pollution and its damage to health (Barwick et al., 2019), and households are willing to pay for

defensive means to reduce their pollution exposure (Ito and Zhang, 2020; Zhang and Mu, 2018).

The general public has substantially raised their awareness of and attention to air pollution after

China’s Clean Air Action Plan was enacted in 2013 (Barwick et al., 2019).28

Figure 6 presents evidence on public awareness of and attention to air pollution during our

28. In 2013, the Chinese government launched a national campaign to fight air pollution. The campaign set up
subcity-level monitoring of air pollutants and released real-time pollution data to the public. Since then, news outlets
and mobile apps started reporting real-time air pollution levels on an hourly basis. This has raised public awareness
of air pollution and its health impacts and encouraged public engagement in pollution monitoring and control. See
Barwick et al. (2019) and Greenstone et al. (2021) for a detailed account of the institutional background of pollution
monitoring and real-time reporting in China since 2013 and discussion of recent studies on public awareness and
avoidance of air pollution in the last decade.
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sample period. The figure shows that daily online searching for pollution-related keywords closely

tracked the daily variation in PM2.5. Panels A to C plot the daily Baidu search volume for the

top three keywords—PM2.5 (the main pollutant), the health damages of PM2.5 (health cost), and

PM2.5-proof face mask (pollution avoidance), respectively—against the daily level of PM2.5.29 All

panels show strong comovement between keyword search volume and the pollution level. Appendix

Figure B6 presents the scatter plot of daily search volume against PM2.5 in our sample, and

Appendix Table A22 presents corresponding regression results after controlling for year-month-

week fixed effects. All evidence shows that the public is aware of daily changes in PM2.5 and the

damage to health of exposure to severe pollution.

Pollution’s Impact on Strategic Interactions We assess pollution’s impact on teams’ strate-

gic interactions by exploiting a unique, standalone phase of an LPL match—the preparation phase.

This phase is designed to let each team choose an active lineup of five players and each player choose

his champion for the upcoming battle in the competition phase. The choice is made under time

pressure: Each player has up to 30 seconds to pick any unpicked champion in the pool and is allowed

to switch his champion with another teammate. The choice of champion is finalized upon confir-

mation or when time runs out. Unlike the competition phase, a team’s decisions in the preparation

phase can be directly observed, so we can assess how teams change their decision-making—rather

than equilibrium battle outcome—in response to higher air pollution. Decision-making in this

preparation phase is highly strategic and interactive in nature: A team decides on players and a

player chooses a champion while forming expectations on what the rival team might choose and an-

ticipating the effect of its own choice on the rival’s decision. Teams and players take turns choosing

and fully internalize the impacts of air pollution on their choices and their opponent’s choices.

We observe two direct measures of teams’ and players’ decisions: (i) the decision time each

player takes to finalize his choice of champion and (ii) the frequency of pick-and-switch during this

decision process (both averaged at team level). Moreover, observing the final decision of players’

champions and teams’ lineup, we define two additional variables based on each player’s and team’s

29. Baidu is the most widely used search engine in China; it publishes daily search indices that summarize the
total number of queries for top keywords. The search index is generated using an algorithm similar to Google Trends
(Vaughan and Chen, 2015).
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prior history of games: (i) an indicator of whether a team chooses its most frequently used lineup

of active players, and (ii) an indicator of whether a player chooses his most frequently used set of

champions. In contrast to performance metrics in the competition phase—e.g., kills and assists—

which are realized equilibrium outcomes, these four measures are a direct measure of a player’s and

a team’s strategic decisions in pre-battle tactics, and thus enable us to investigate the impact of

air pollution on strategic decision-making.

Table 6 shows that air pollution’s effect on decision time and the frequency of pick-and-switch

depends on a team’s relative strength against its rival in a matchup. We first analyze a team’s

decision time and report the estimation results in Panel A. Column (4), based on Equation (5)

with Rel.Strong and Abs.Strong, shows that the weaker team increases its decision time by 0.112

seconds when facing a 10 µg/m3 increase in PM2.5 during the match hour. Such an effect of air

pollution on decision time is not exhibited by teams who are absolutely weak but stronger than

their rival. This result is robust when we normalize the decision time by each team’s seasonwide

standard deviation of decision time. Appendix Table A23, Panel A shows that the weaker team

increases its decision time by 0.025 SD for each 10 µg/m3 increase in PM2.5.

Considering that a higher frequency of pick-and-switch implies greater effort in decision-making,

we investigate the effect of air pollution on a team’s frequency of pick-and-switch in Table 6, Panel

B. Results confirm that air pollution increases a team’s frequency of pick-and-switch if it is weaker

than its rival in a matchup. Given that the frequency of pick-and-switch is highly right-skewed in

distribution (see Appendix Figure B7), we take the log of the variable. We find that the weaker team

increases its average frequency of pick-and-switch by 0.92% for each 10 µg/m3 increase in PM2.5.

Results remain robust when we normalize the frequency of pick-and-switch by a team’s seasonwide

SD of this frequency. Appendix Table A23, Panel B shows that the weaker team increases its

frequency of pick-and-switch by 0.026 SD for each 10 µg/m3 increase in PM2.5.

We then construct two proxies for whether a team adopts a more conservative or aggressive

strategy based on a team’s choice of active players and a player’s choice of a champion, respectively.

We define an indicator of an aggressive team strategy if a team chooses a less frequently used lineup

of active players, and an indicator of an aggressive player strategy if a player chooses a less frequently

played champion. In general, each team has one frequently used lineup that represents the highest
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level of experience and teamwork. Similarly, each player has a set of most preferred and frequently

used champions.30 However, since teams frequently compete against each other, each team’s and

player’s most frequent choice is commonly known by all other teams. As a result, choosing the most

frequently used lineup or champion would be a safe and conservative strategy, but can be expected

and countered by the rival. In contrast, choosing a less frequently used lineup or champion may

surprise the rival and catch them off guard, but at the same time be risky and aggressive in a

competitive match. Choosing a less frequently used lineup or champion thus requires more team

coordination and strategic planning. We investigate whether and how a higher level of air pollution

may interfere with teams’ decisions in deploying a more aggressive player lineup and champions.

Table 7 shows that air pollution changes a team’s decision on the choice of players and cham-

pions, and the magnitude and the direction of such changes depend on a team’s relative strength

against its rival. Table 7, Column (4), based on the specification of Equation (5), shows that when

facing a higher level of PM2.5, the weaker team has a higher probability of adopting a less frequently

used lineup (Panel A) and choosing less frequently used champions (Panel B). This suggests that

a more polluted environment renders the weaker team more likely to adopt an aggressive strategy,

whereas the stronger team tends to stick to a more conservative one. This pattern of a team’s

strategic decisions on the choice of lineup and champions is consistent with the pattern for decision

time and the frequency of pick-and-switch.

Overall, Tables 6 and 7 show that in the preparation phase the weaker team in a matchup adjusts

their strategic decision-making differently in a polluted environment compared with the stronger

opponent. These results confirm the impact of air pollution on the strategic decision-making of

teams in competition.

5.4 A Stylized Contest Model

We elaborate on the impact of air pollution on players’ decisions and the equilibrium outcome

in a simple two-player asymmetric contest model. The purpose of the model is to elucidate the role

of strategic interaction in shaping players’ decisions in contests and how air pollution may affect

30. We define for each player the most frequently used 6 champions over the sample period as this player’s set of
frequently played champions. Most players have 5 to 6 frequently used champions for the purpose of flexibility of
choice and team strategy.
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equilibrium outcomes through its impact on strategic interactions. We briefly discuss the setup,

intuition, and takeaway of the model here and relegate the details to Appendix Section A.

Consider a simple contest with two risk-neutral teams, indexed by i ∈ {s, w}. To win the prize—

e.g., a trophy, prize, and/or the opportunity to proceed to the next stage—teams simultaneously

submit their effort entry xi ≥ 0. A lottery contest success function (CSF) captures the probabilistic

nature of the equilibrium outcome of the contest: Fixing an effort profile (xs, xw) > (0, 0), team i

wins with a probability pi(xs, xw) = xi/(xs + xw).
31

Following Moldovanu and Sela (2001, 2006) and Moldovanu et al. (2007), team i’s effort cost

takes the form of c(xi)/ai, where ai > 0 measures the team’s innate ability or absolute strength

and c(·) is a strictly increasing and weakly convex function with c(0) = 0. A larger ai means that

team i ∈ {s, w} is of higher ability. Without loss of generality, we assume as ≥ aw.

Air pollution affects a team’s effort cost function. More specifically, higher air pollution increases

an individual’s marginal cost on effort. Note that a team in a contest will adjust its equilibrium

effort not only to a change in the marginal cost of its own effort, but also in response to how the rival

team adjusts their effort in response to pollution. Therefore, air pollution affects the equilibrium

outcome by varying teams’ strategic interactions.

Our analysis leads to two propositions.32 First, pollution’s impact on team’s equilibrium effort

in contest is less than straightforward, due to an competition effect triggered by the strategic

interactions between teams. We show that air pollution does not always reduce effort and may

instead enhance the weak team’s effort incentive (Appendix Propositions 1 and 2). This result is

due to the nonmonotonicity in teams’ best responses (Dixit, 1987), as stated in the introduction.

Intuitively, a direct cost effect is triggered by higher air pollution—i.e., by the extra marginal cost—

and both teams tend to cut back on their effort. However, they may respond differently to their

opponents’ reduction in effort. The favorite tends to further slack off when the underdog reduces

effort; as a result, the favorite reduces its equilibrium effort unambiguously under higher pollution.

In contrast, the underdog is encouraged to step up effort in response to the favorite’s slacking off,

which leads to an ambiguous overall effect of air pollution on the underdog’s equilibrium effort.

31. In the case in which both teams exert zero effort—i.e., (xs, xw) = (0, 0)—teams win with equal probability.
32. See details in Appendix Section A and proofs in Appendix Section B.
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In particular, when the indirect competition effect outweighs the direct cost effect, the weak team

would step up its effort in the equilibrium when the air quality deteriorates. This result may

explain our empirical finding on a team’s decisions in the preparation phase, whereby the weaker

team adopts a more effortful, aggressive tactic in its team lineup and champion choices when air

quality worsens during the match hour.

Second, whether the stronger team is more likely to win upon a negative air-quality shock

hinges crucially on how air pollution varies the contest environment (Appendix Proposition 3 and

Appendix Remark 1). In other words, air pollution could lead to either a more elitist distributional

outcome—i.e., the favorite ends up with higher winning odds—or the opposite, depending on how

air pollution affects the marginal effort cost function and the relative strength between players in

the matchup (which affects the magnitude of the competition effect). In empirical analyses of LPL

match outcomes, we find that air pollution would increase the winning probability of the stronger

team.33 Consistent with the model’s prediction in symmetric contests, the gap-widening effect

becomes negligible when teams are on par.

6 Conclusion

Our study illuminates the intricate effect of air pollution on players’ decisions and equilibrium

outcomes in a contest setting. We exploit a player-team-match dataset of a professional eSports

tournament merged with hourly air-quality conditions to investigate the effect of air pollution on

team performance and match outcome. We find a robust, distributional effect of air pollution on

team performance that leads to a more elitist match outcome. We show that the distributional

effect of air pollution is driven by the relative difference in team strength with respect to its rival

rather than the level of its own strength. Air pollution tilts the competitive balance of the match

and magnifies the gap in strength between teams and has zero effect between homogeneous rivals.

In addition, air pollution reduces the unpredictability of the match and lowers the intensity of

competition.

33. A caveat worth noting is that we do not rule out the channel of a heterogeneous impact of air pollution on
team performance. Our empirical findings can be driven by both the pathophysiological pathway on teams’ cognitive
performance and the effect on the strategic interactions of teams’ efforts.
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We propose players’ strategic interactions as an important pathway by which air pollution affects

equilibrium competition outcomes. We study this novel channel in both empirics and theory. In

particular, based on observed player and team decision-making in a unique preparation phase of

the eSports matches, we find that the weaker team in a matchup increases effort in decision-making

and adopts more aggressive pre-battle tactics under a more polluted environment. This presents

evidence on air pollution’s impact on teams’ strategic interactions in a highly competitive contest

environment.

Although our analyses focus on a specific (eSports) contest setting, we believe that the nature of

its cognitive engagement and strategic interactions can be embodied in other real-life high-skilled

competitive environments. Our work thus opens up avenues for research on the implications of

environmental adversity in strategic environments.
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Künn, S., J. Palacios, and N. Pestel (2023). Indoor air quality and strategic decision making. Management Science.

La Nauze, A. and E. R. Severnini (2021). Air pollution and adult cognition: evidence from brain training. Technical
report, National Bureau of Economic Research.

Lelieveld, J., J. S. Evans, M. Fnais, D. Giannadaki, and A. Pozzer (2015). The contribution of outdoor air pollution
sources to premature mortality on a global scale. Nature 525 (7569), 367–371.

Liu, H., J. Lu, and A. Salvo (2022). Willingness to fight on: Environmental quality in dynamic contests. RAND
Journal of Economics. Forthcoming.

MacNeill, M., L. Wallace, J. Kearney, R. Allen, K. Van Ryswyk, S. Judek, X. Xu, and A. Wheeler (2012). Factors
influencing variability in the infiltration of pm2.5 mass and its components. Atmospheric Environment 61, 518–532.

Malueg, D. A. and A. J. Yates (2010). Testing contest theory: Evidence from best-of-three tennis matches. Review
of Economics and Statistics 92 (3), 689–692.

Moldovanu, B. and A. Sela (2001). The optimal allocation of prizes in contests. American Economic Review 91 (3),
542–558.

Moldovanu, B. and A. Sela (2006). Contest architecture. Journal of Economic Theory 126 (1), 70–96.

Moldovanu, B., A. Sela, and X. Shi (2007). Contests for status. Journal of Political Economy 115 (2), 338–363.

Nadali, A., H. Arfaeinia, Z. Asadgol, and M. Fahiminia (2020). Indoor and outdoor concentration of pm10, pm2. 5
and pm1 in residential building and evaluation of negative air ions (nais) in indoor pm removal. Environmental
Pollutants and Bioavailability 32 (1), 47–55.

Park, R. J. (2022). Hot temperature and high-stakes performance. Journal of Human Resources 57 (2), 400–434.

Park, R. J., J. Goodman, M. Hurwitz, and J. Smith (2020). Heat and learning. American Economic Journal:
Economic Policy 12 (2), 306–39.

Peeples, L. (2020). How air pollution threatens brain health. Proceedings of the National Academy of Sciences 117 (25),
13856–13860.

Qin, Y., J. Wu, and R. Zhang (2022). Can professional football players adapt to air pollution? Evidence from china.
Journal of Sports Economics 23 (3), 277–300.

Ray, D., J.-M. Baland, and O. Dagnelie (2007). Inequality and inefficiency in joint projects. Economic Jour-
nal 117 (522), 922–935.

Roth, S. (2021). The effect of indoor air pollution on cognitive performance: Evidence from the UK. Working Paper .

Stafford, T. and M. Dewar (2014). Tracing the trajectory of skill learning with a very large sample of online game
players. Psychological Science 25 (2), 511–518.

Szidarovszky, F. and K. Okuguchi (1997). On the existence and uniqueness of pure nash equilibrium in rent-seeking
games. Games and Economic Behavior 18 (1), 135–140.

Vaughan, L. and Y. Chen (2015). Data mining from web search queries: A comparison of google trends and baidu
index. Journal of the Association for Information Science and Technology 66 (1), 13–22.

Weschler, C. J. (2000). Ozone in indoor environments: concentration and chemistry. Indoor air 10 (4), 269–288.

World Health Organization (2021). WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone,
nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization.

Zhang, J. and Q. Mu (2018). Air pollution and defensive expenditures: Evidence from particulate-filtering facemasks.
Journal of Environmental Economics and Management 92, 517–536.

Zhang, X., X. Chen, and X. Zhang (2018). The impact of exposure to air pollution on cognitive performance.
Proceedings of the National Academy of Sciences 115 (37), 9193–9197.

36



7 Figures

(A) Entire Sample Period from 2017 to 2021

(B) January in Spring Season 2018

FIGURE 1
Temporal Variation in PM2.5 in Shanghai

Notes: This figure presents the temporal variation in PM2.5 in Shanghai across LPL match hours. Each data point
represents the level of PM2.5 during a particular match. Panel A presents the variation in PM2.5 across the entire
sample period; Panel B presents the variation in PM2.5 across match hours in the spring season of 2018. Unit of
PM2.5 is 10 µg/m3.
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(A) Kills per match (team) (B) Assists per match (team)

(C) Kills per match (player) (D) Assists per match (player)

FIGURE 2
Histogram of Kills and Assists per Match for Players and Teams

Notes: This figure presents the histogram of key performance metrics for teams and players. Panels A and B depict
the distribution of kills and assists per match for teams, respectively; Panels C and D show the distribution of kills
and assists per match for players, respectively.
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(A) Kills by Rel. Strength (All) (B) Assists by Rel. Strength (All)

(C) Kills by Rel. Strength (Medium) (D) Assists by Rel. Strength (Medium)

FIGURE 3
Relationship between Team Performance and Air Pollution

Notes: This figure presents the scatter plot and linear fit of team performance against the match-hour level of PM2.5.
Panel A presents the relationship between the team’s kills per 10 minutes and the level of air pollution. Dark circles
represent the stronger team and gray triangles represent the weaker team. See Equation (3) for the definition of team
strength. Panel B presents the relationship of assists per 10 minutes. Panels C and D fix to a group of medium-ranked
teams and present the relationship between these teams’ kills and assists per 10 minutes and the level of air pollution
when competing against a weaker rival (dark circles) and a stronger rival (gray triangles). Unit of PM2.5 is 10 µg/m3.
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FIGURE 4
Effect of PM2.5 on Win or Loss in 3×3 Combinations of Team Pairs

Notes: This figure presents the estimated effect of air pollution on a team’s winning probability in 3×3 cases of team
pairs. We define three dummies for team strength—i.e., ranked at the top, middle, or bottom one-third in team
competitiveness index (δ̂ in Equation (3))—and generate 3×3 mutually exclusive groups of self-versus-rival team
pairs. We plot the estimated effect of air pollution on the probability of winning in each group of team pairs. Robust
standard errors are reported in parentheses.
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(A) Random Match Time

(B) Random Match Time and Locations

FIGURE 5
Placebo Test Using Randomized Match Time and Locations

Notes: This figure plots estimated coefficients from two placebo tests. Panel A plots the histogram of coefficient
estimate of γ from Equation (2) after randomly assigning the match time (and correspondingly the level of PM2.5)
to matches in actual match locations. Panel B plots the histogram of coefficient estimate of γ by randomly assigning
both match time and match locations. The dependent variable is the indicator for winning. In each panel, a placebo
regression of Equation (2) is repeated 1, 000 times. Dashed vertical lines represent 99% confidence intervals and solid
vertical lines represent the benchmark estimate (γ) from Table 3, Column 1.
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(A) Search for the level of PM2.5

(B) Search for the health damages of PM2.5

(C) Search for PM2.5-proof face mask

FIGURE 6
Comovement between Pollution-related Search and PM2.5 in Shanghai

Notes: This figure depicts the temporal pattern of daily Baidu search volume of pollution-related keywords with daily
level of PM2.5 in Shanghai. Unit of PM2.5 is 10 µg/m3. Panel A presents the search for keywords related to the
level of PM2.5, Panel B for the health damages of PM2.5, and Panel C for PM2.5-proof face mask. The figure shows
that search intensity for PM2.5-related keywords increases as the PM2.5 level increases.
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8 Tables

TABLE 1 Data Description

Variable Mean S.D. Min Max Obs

Panel A: Measures of Team Performance in Competition Phase

Win 0.50 0.50 0 1 5,276

Kill 12.69 6.70 0 36 5,276

Assist 30.05 17.28 0 107 5,276

Gold 59,195 13,137 22,524 122,536 5,276

Kill per 10 min. 3.93 2.18 0 14.13 5,276

Assist per 10 min. 9.23 5.40 0 32.86 5,276

Gold per 10 min. 18,028 1,952 13,449 23,579 5,276

Match time (min.) 32.8 6.5 15.6 67.9 5,276

Panel B: Measures of Team Decision in Preparation Phase

Decision time (sec.) 17.74 4.43 2.75 30 5,006

Frequency of pick-and-switch 0.64 0.80 0 14.5 5,002

Using less frequent lineup 0.31 0.46 0 1 5,276

Using less frequent champion 0.09 0.29 0 1 26,380

Panel C: Descriptive Statistics of Air Pollution

PM2.5 (10µg/m3) 3.57 2.77 0.10 24.85 5,222

PM10 (10µg/m3) 5.50 3.50 0.3 28.58 5,186

AQI (10µg/m3) 5.94 3.44 0.83 29.85 5,222

Notes: This table presents summary statistics. Kill is defined as the number of times a player has landed the killing

blow on a fallen rival champion; assist is the number of times a player has contributed damages to a fallen rival cham-

pion; and gold is the amount of gold earned by defeating rival champions and neutral minions. Decision time is the

time a player takes to choose a champion in the preparation phase; and the frequency of pick-and-switch is the num-

ber of times a player change the choice of champion before the final decision. Using less frequent lineup is an indicator

that a team is not adopting the most frequently used lineup of five active players. Using less frequent champion is an

indicator that a player is not using one of his six most frequently used champions (at player level, with larger sample

size). PM2.5 is the concentration of airborne particulate matters with diameter less than 2.5 micrometers. PM10 is

the concentration of airborne particulate matters with diameter less than 10 micrometers. AQI is the air quality

index that measures the overall concentration of six main air pollutants: PM2.5, PM10, O3, CO, NO2, and SO2.
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TABLE 2
Average Effects of PM2.5 on Match Outcome and Team Performance

(1) (2) (3) (4) (5) (6) (7)

Total Per 10 Mins

Win Kill Assist Gold Kill Assist Gold

PM2.5 -0.000 -0.015 -0.138 -116.915 0.004 -0.019 -1.208

(0.004) (0.052) (0.132) (93.539) (0.015) (0.039) (16.046)

Team-Pair FE Yes Yes Yes Yes Yes Yes Yes

Match-Type FE Yes Yes Yes Yes Yes Yes Yes

City×Year×Month FE Yes Yes Yes Yes Yes Yes Yes

Day-of-Week and Holiday FE Yes Yes Yes Yes Yes Yes Yes

Observations 5,222 5,222 5,222 5,222 5,222 5,222 5,222

R-squares 0.195 0.207 0.182 0.228 0.238 0.206 0.230

Mean Dep. Var. 0.5 12.7 30.1 59,159 3.93 9.23 18,028

Notes: This table presents the average effects of PM2.5 on team’s competitive performance. The dependent variable is the indicator of win (Column 1), the

number of kills, assists, and gold (Columns 2-4), and their per-10-minute counterparts (Columns 5-7). PM2.5 is the level of PM2.5 (in 10 µg/m3) at the hour

of the match. Regressions control for team-pair fixed effects, match-type fixed effects, city-by-year-by-month fixed effects, and day-of-week and public holiday

fixed effects. Mean of dependent variables are presented in the last row. Further details are specified in Section 3.2. Robust standard errors in parentheses are

clustered at team-by-season level. *** p <0.01, ** p <0.05, * p <0.1.
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TABLE 3
Distributional Effects of PM2.5 on Team Performance by Relative Strength

(1) (2) (3) (4) (5) (6) (7)

Total Per 10 Mins

Win Kill Assist Gold Kill Assist Gold

PM2.5 -0.009** -0.150** -0.478*** -255.159** -0.040** -0.128*** -46.948***

(0.004) (0.058) (0.145) (124.707) (0.017) (0.043) (17.734)

PM2.5×Rel.Strong 0.019*** 0.268*** 0.680*** 276.489* 0.088*** 0.218*** 91.479***

(0.006) (0.068) (0.167) (155.445) (0.020) (0.050) (22.221)

Team-Pair FE Yes Yes Yes Yes Yes Yes Yes

Match-Type FE Yes Yes Yes Yes Yes Yes Yes

City×Year×Month FE Yes Yes Yes Yes Yes Yes Yes

Day-of-Week and Holiday FE Yes Yes Yes Yes Yes Yes Yes

Observations 5,222 5,222 5,222 5,222 5,222 5,222 5,222

R-squares 0.197 0.209 0.185 0.228 0.240 0.208 0.234

Mean Dep. Var. 0.5 12.7 30.1 59,159 3.93 9.23 18,028

Notes: This table presents the distributional effects of PM2.5 on team’s competitive performance. The dependent variable is the indicator of win (Column 1), the

number of kills, assists, and gold (Columns 2-4), and their per-10-minute counterparts (Columns 5-7). PM2.5 is the level of PM2.5 (in 10 µg/m3) at the hour

of the match. Rel.Strong is a dummy variable indicating the team’s competitiveness index ranks higher than the rival team in the matchup. Team’s competi-

tiveness is computed as the team fixed effects from Equation (3). Regressions control for team-pair fixed effects, match-type fixed effects, city-by-year-by-month

fixed effects, and day-of-week and public holiday fixed effects. Mean of dependent variables are presented in the last row. Further details are specified in Section

3.2. Robust standard errors in parentheses are clustered at team-by-season level. *** p <0.01, ** p <0.05, * p <0.1.
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TABLE 4
Distributional Effects of PM2.5 on Team Performance by Competitiveness Gap

(1) (2) (3) (4) (5) (6) (7)

Total Per 10 Mins

Win Kill Assist Gold Kill Assist Gold

PM2.5 -0.000 -0.015 -0.138 -116.915 0.004 -0.019 -1.208

(0.004) (0.048) (0.120) (88.588) (0.014) (0.036) (14.489)

PM2.5×Gap 0.063*** 0.720*** 1.917*** 820.610* 0.215*** 0.558*** 250.688***

(0.017) (0.231) (0.582) (449.739) (0.072) (0.179) (67.617)

Team-Pair FE Yes Yes Yes Yes Yes Yes Yes

Match-Type FE Yes Yes Yes Yes Yes Yes Yes

City×Year×Month FE Yes Yes Yes Yes Yes Yes Yes

Day-of-Week and Holiday FE Yes Yes Yes Yes Yes Yes Yes

Observations 5,222 5,222 5,222 5,222 5,222 5,222 5,222

R-squares 0.197 0.208 0.184 0.228 0.239 0.207 0.232

Mean Dep. Var. 0.5 12.7 30.1 59,159 3.93 9.23 18,028

Notes: This table presents the distributional effects of PM2.5 on team’s competitive performance. The dependent variable is the indicator of win (Column 1), the

number of kills, assists, and gold (Columns 2-4), and their per-10-minute counterparts (Columns 5-7). PM2.5 is the level of PM2.5 (in 10 µg/m3) at the hour of

the match. Regressions control for team-pair fixed effects, match-type fixed effects, city-by-year-by-month fixed effects, and day-of-week and public holiday fixed

effects. Gap is the competitiveness gap measured as the difference of competitiveness index between a team and its rival. Team’s competitiveness is computed

as the team fixed effects from Equation (3). Further details are specified in Section 3.2. Robust standard errors in parentheses are clustered at team-by-season

level. *** p <0.01, ** p <0.05, * p <0.1.
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TABLE 5
Testing Relative vs. Absolute Strength as Source of Distributional Effects of Air Pollution

(1) (2) (3) (4) (5) (6) (7)

Total Per 10 Mins

Win Kill Assist Gold Kill Assist Gold

PM2.5 -0.011** -0.206*** -0.635*** -395.353*** -0.048** -0.154*** -53.047**

(0.006) (0.068) (0.176) (124.217) (0.021) (0.054) (22.282)

PM2.5×Rel.Strong 0.017** 0.203** 0.498** 113.791 0.080*** 0.188*** 84.402***

(0.007) (0.087) (0.201) (177.201) (0.027) (0.063) (27.759)

PM2.5×Abs.Strong 0.005 0.137 0.381 340.781** 0.019 0.063 14.825

(0.008) (0.097) (0.236) (162.738) (0.031) (0.074) (31.845)

Team-Pair FE Yes Yes Yes Yes Yes Yes Yes

Match-Type FE Yes Yes Yes Yes Yes Yes Yes

City×Year×Month FE Yes Yes Yes Yes Yes Yes Yes

Day-of-Week and Holiday FE Yes Yes Yes Yes Yes Yes Yes

Observations 5,222 5,222 5,222 5,222 5,222 5,222 5,222

R-squares 0.197 0.209 0.185 0.229 0.240 0.208 0.234

Notes: This table tests the distributional effects of PM2.5 on team’s competitive performance with respect to team’s relative strength vs. absolute strength

against the rival team. The dependent variable is the indicator of win (Column 1), the number of kills, assists, and gold (Columns 2-4), and their per-10-minute

counterparts (Columns 5-7). PM2.5 is the level of PM2.5 (in 10 µg/m3) at the hour of the match. Regressions control for team-pair fixed effects, match-type

fixed effects, city-by-year-by-month fixed effects, and day-of-week and public holiday fixed effects. Rel.Strong is a dummy variable indicating the team’s compet-

itiveness is higher than the rival team in the matchup. Abs.Strong is a dummy variable indicating the team’s competitiveness is higher than the medium among

all teams. Team’s competitiveness is computed as the team fixed effects from Equation (3). Further details are specified in Section 3.2. Robust standard errors

in parentheses are clustered at team-by-season level. *** p <0.01, ** p <0.05, * p <0.1.
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TABLE 6
Effects of Air Pollution on Decision Time and Pick-and-switch

(1) (2) (3) (4)

Panel A: Dependent Variable: Decision Time

PM2.5 -0.041 -0.068 -0.089 -0.084

(0.146) (0.146) (0.148) (0.146)

PM2.5×Abs. Weak 0.071 -0.034

(0.058) (0.075)

PM2.5×Rel. Weak 0.096*** 0.112**

(0.035) (0.046)

Observations 5,006 5,006 5,006 5,006

R-squares 0.371 0.371 0.372 0.372

Panel B: Dependent Variable: Log Frequency of Pick-and-switch

PM2.5 0.0053 0.0032 0.0014 0.0018

(0.0134) (0.0138) (0.0138) (0.0139)

PM2.5×Abs. Weak 0.0056 -0.0030

(0.0064) (0.0078)

PM2.5×Rel. Weak 0.0078** 0.0092**

(0.0039) (0.0045)

Observations 5,002 5,002 5,002 5,002

R-squares 0.426 0.427 0.427 0.427

Notes: This table tests the effects of PM2.5 on team’s and player’s decision-making in the preparation phase of the

match. The dependent variable in Panel A is the time a player takes to finalize his choice of champion; and the de-

pendent variable in Panel B is the number of times a player changes his choice of champion before the final decision.

PM2.5 is the level of PM2.5 (in 10 µg/m3) at the hour of the match near the match stadium. Rel.Weak indicates

that the team’s competitiveness is lower than the rival team. Abs.Weak indicates that the team’s competitiveness is

lower than half of all teams. See the computation of team’s competitiveness in Equation (3). All regressions control

for team-pair fixed effects, match-type fixed effects, city-by-year-by-month fixed effects, and day-of-week and public

holiday fixed effects. *** p <0.01, ** p <0.05, * p <0.1.
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TABLE 7
Effects of Air Pollution on Team’s Choice of Lineup and Player’s Choice of Champion

(1) (2) (3) (4)

Panel A: Dependent Variable: Dummy for Using Less Frequent Team Lineup

PM2.5 -0.007* -0.010* -0.015*** -0.015***

(0.004) (0.005) (0.005) (0.005)

PM2.5×Abs. Weak 0.010 -0.001

(0.008) (0.010)

PM2.5×Rel. Weak 0.016** 0.016**

(0.007) (0.008)

Observations 5,222 5,222 5,222 5,222

R-squares 0.350 0.350 0.351 0.351

Panel B: Dependent Variable: Dummy for Using Less Frequent Champion

PM2.5 0.0004 -0.0001 -0.0010 -0.0010

(0.0010) (0.0012) (0.0012) (0.0013)

PM2.5×Abs. Weak 0.0016 -0.0002

(0.0018) (0.0020)

PM2.5×Rel. Weak 0.0029** 0.0030*

(0.0014) (0.0016)

Observations 26,092 26,092 26,092 26,092

R-squares 0.0993 0.0994 0.0995 0.0995

Notes: This table tests the effects of PM2.5 on team’s and player’s decision-making in the preparation phase of the

match. The dependent variable in Panel A is the indicator for using a lineup that is not the most frequently used

one; the dependent variable in Panel B is the indicator for a player choosing a champion that is not one of the most

frequently used six champions. PM2.5 is the level of PM2.5 (in 10 µg/m3) at the hour of the match near the match

stadium. Rel.Weak indicates that the team’s competitiveness is lower than the rival team. Abs.Weak indicates

that the team’s competitiveness is lower than half of all teams. See the computation of team’s competitiveness in

Equation (3). Team-level regressions in Panel A control for team-pair fixed effects, match-type fixed effects, city-

by-year-by-month fixed effects, and day-of-week and public holiday fixed effects. Player-level regressions in Panel B

additionally control for player FEs and role-of-team FEs. *** p <0.01, ** p <0.05, * p <0.1.
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Air Pollution Kills Competition: Evidence from ESports

ONLINE APPENDIX

(Not Intended for Publication)

In this appendix, we collect the analyses, discussions, figures, and tables omitted from the main
text.34

Appendix A A Stylized Contest Model

In this section, we elaborate on the impact of air pollution on players’ decisions and the equi-
librium outcome in a simple contest model with asymmetric players. To better connect our model
to later empirical analyses, we refer to player(s) as team(s) throughout the section. Our analysis
demonstrates that (i) air pollution does not always lead to negative consequences, and may in fact
increase the weak team’s effort incentive in a game-theoretic environment, and (ii) whether the
stronger team is more likely to win upon a negative air-quality shock hinges crucially on how air
pollution varies the contest environment (or teams’ adaptability to air pollution).

A.1 Model Setup

Consider a contest with two risk-neutral teams, indexed by i ∈ {s, w}. The two teams vie for a
prize—e.g., a trophy, championship prize, and/or the opportunity to proceed to the next stage—by
exerting irreversible efforts simultaneously. The prize carries a common monetary value, which we
normalize to unity. Further, we assume a lottery contest success function (CSF) to capture the
probabilistic nature of competition: Fixing an effort profile (xs, xw) ≥ (0, 0), team i wins with a
probability

pi(xs, xw) =

{
xi/(xs + xw) if xs + xw > 0,

1/2 if xs + xw = 0.

Following Moldovanu and Sela (2001, 2006) and Moldovanu et al. (2007), team i’s effort cost takes
the form of c(xi)/ai, where ai > 0 refers to the team’s ability and c(·) is a strictly increasing and
weakly convex function with c(0) = 0. Note that a large ai means that team i is of high ability and
vice versa. Without loss of generality, we assume as ≥ aw.

Given the effort pair (xs, xw), team i’s expected payoff is

πi(xs, xw) := pi(xs, xw)− c(xi)/ai, i ∈ {s, w}.

The c(·) function, together with teams’ ability profile (as, aw), defines a simultaneous-move
contest game, which we denote by ⟨c(·), (as, aw)⟩. By Szidarovszky and Okuguchi (1997) and
Cornes and Hartley (2005), there exists a unique pure-strategy equilibrium of the above contest
game, which lays a foundation for our subsequent analysis.

For simplicity, we abstract away the free-riding problem within team members in the model laid
out above by assuming that a representative player acts on behalf of each team. In Appendix C,

34. This note is not self-contained; it is the online appendix of the paper “Air Pollution Kills Competition: Evidence
from ESports.”
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we extend the model to allow each team to consist of multiple homogeneous players and show that
all of our results remain unchanged.

A.2 Analysis

Next, we examine the impact of a change in air quality on each team’s equilibrium effort and
winning probability. Numerous studies have documented the damaging effects of air pollution.
For example, Zhang et al. (2018) estimate the contemporaneous and cumulative impacts of air
pollution on cognition and show that air pollution impedes cognitive performance. Put differently,
it becomes more costly for an agent to achieve the same cognitive performance as air pollution
worsens. Inspired by these findings, we model air pollution as an increase in a team’s marginal
effort cost. More formally, we assume that the deterioration of air quality results in a change in
the c(·) function from c1(·) to c2(·), with c′1(x) < c′2(x) for all x > 0.35

Remark 1 (Impact of Air Pollution in Symmetric Contests) Analysis of the case in which
the two teams have the same ability—i.e., as = aw—is straightforward. It can be verified that both
teams exert the same amount of effort in the unique equilibrium, and thus the two teams have equal
probabilities of winning regardless of the level of air pollution. Further, each team’s effort in the
symmetric equilibrium decreases as c(·) changes from c1(·) to c2(·).

In what follows, we focus on the case in which the two teams have different abilities.

A.2.1 Impact of Air Pollution on Equilibrium Effort

We first analyze the equilibrium individual effort and aggregate effort. For notational conve-
nience, denote team i’s equilibrium effort under contest ⟨cℓ(·), (as, aw)⟩ by x∗i,ℓ, with ℓ ∈ {1, 2}.
Further, define X∗

ℓ :=
∑2

i=1 x
∗
i,ℓ. Three propositions are in order. All proofs are provided in

Appendix B.

Proposition 1 (Impact of Air Pollution on Equilibrium Effort) Suppose that the two teams
are heterogeneous—i.e., as > aw—and consider two strictly increasing and weakly convex functions
c1(·) and c2(·), with c1(0) = c2(0) = 0 and c′1(x) < c′2(x) for all x > 0. The following statements
hold as c(·) changes from c1(·) to c2(·):

(i) The strong team’s equilibrium effort always decreases, i.e., x∗s,1 > x∗s,2;

(ii) The weak team’s equilibrium effort may either increase or decrease—i.e., both x∗w,1 < x∗w,2

and x∗w,1 > x∗w,2 are possible—depending on c1(·), c2(·), and (as, aw);

(iii) The aggregate effort of the contest unambiguously decreases, i.e., X∗
1 > X∗

2 .

By Proposition 1(i), the strong team’s effort incentive is dampened when the air quality de-
creases. The same pattern can be observed for aggregate effort. By Proposition 1(iii), despite the
potential effort boost from the weak team, the overall impact of air pollution on the aggregate
effort elicited from the competition is clear-cut and negative.

Importantly, the proposition indicates that air pollution does not always lead to negative conse-
quences in a strategic environment. Proposition 1(ii) predicts that the impact of air pollution on the
weak team’s effort incentive is ambiguous. As previously stated, two effects naturally arise. There

35. In our model, each team realizes the impact of air pollution on its cost function. We will present empirical
support for players’ awareness of air pollution and its health effects in Section 5.3.
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is a direct cost effect: Air pollution is counterproductive by nature and the elevated (marginal) cost
discourages both teams’ efforts. On the other hand, the direct cost effect would trigger an indirect
competition effect that comes into play through the reflexive interaction between teams, since each
must adjust its effort choice in response to the change in the effort of its opponent. In a typical
contest setting, opponents’ efforts are strategic complements to the strong team and strategic sub-
stitutes to the weak team. In our context, the concession of the weak team allows the strong team to
slack off because of the strategic complementarity, since a lower effort may still render him equally
likely to win; a less aggressive strong team—due to the direct cost effect—further incentivizes the
weak team to step up its effort because of the strategic substitutability. Note that both the cost
and competition effects weaken the strong team’s effort incentive, and hence it would reduce effort
unambiguously, as stated in Proposition 1(i). In contrast, the weak team’s effort choice is subject
to competing forces. In particular, when the indirect competition effect outweighs the direct cost
effect, the weak team would step up its effort in the equilibrium when the air quality deteriorates.

To proceed, let x := c−1
1 (as). Evidently, choosing an effort level that exceeds x yields a negative

expected payoff regardless of the opponent’s effort level—which is strictly dominated by choosing
zero effort—and thus a team’s equilibrium effort must lie between 0 and x. Define δ(x) := c2(x)−
c1(x) and r1 := infx∈[0,x] xδ

′′(x)/δ′(x). Similarly, define C(x;λ) := c1(x) + λδ(x), with λ ∈ [0, 1],

and r2 := supx∈[0,x],λ∈[0,1] x
∂2C(x;λ)

∂x2

/∂C(x;λ)
∂x . It follows immediately that c1(x) = C(x; 0) and c2(x) =

C(x; 1). Note that r1 and r2 provide an intuitive measure of the curvature of δ(·) and C(·;λ),
respectively.

Our next result spells out sufficient conditions for the weak team’s equilibrium effort level to
increase or decrease upon a deterioration of the air quality.36

Proposition 2 (Impact of Air Pollution on the Weak Team’s Incentive) Suppose that the
two teams are heterogeneous—i.e., as > aw—and consider two strictly increasing and weakly convex
functions c1(·) and c2(·), with c1(0) = c2(0) = 0 and c′1(x) < c′2(x) for all x > 0. The following
statements hold as c(·) changes from c1(·) to c2(·):

(i) Suppose that δ′′(x) ≤ 0 for all x ∈ (0, x]. Then the weak team’s equilibrium effort decreases—
i.e., x∗w,1 > x∗w,2.

(ii) Suppose that δ′′(x) > 0 for all x ∈ (0, x]. Then the weak team’s equilibrium effort increases—
i.e., x∗w,1 < x∗w,2—if r1 ≥ 1 and

(
as
aw

) r1−1
r2+1

( as
aw

) 1
r2+1

− 1

 > r2

(
as
aw

) 1
r2+1

+ r2 + 2. (6)

By Proposition 2, whether the deterioration of the air quality increases or decreases the weak
team’s equilibrium effort crucially depends on the shape/curvature of the δ(·) function, i.e., the
difference between c2(·) and c1(·). Intuitively, a convex effort cost function automatically handicaps
the strong team because of its higher effort level, which in turn levels the playing field and fuels
competition. When the δ(·) function is weakly concave, a team is gradually adapted to the increased
air pollution level as it continues to increase its effort. Given that the strong team always exerts
more effort than the weak one in equilibrium, the equalizing effect triggered by the convexity of the
effort cost function tends to lose its appeal, which limits the aforementioned competition effect. As

36. In Appendix D, we construct a parameterized setting with a linear quadratic effort cost function to illustrate
how the conditions established in Propositions 2 and 3 translate into the parameters of the effort cost function.
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a result, the direction of the weak team’s effort response is mainly driven by the direct cost effect
and thus decreases, as predicted by Proposition 2(i).

Proposition 2(ii) can again be explained in light of the rationale outlined above. Note that r1
specifies the lower bound of the convexity of δ(·) and r2 gives the upper bound of the convexity of
C(·;λ), which we construct based on c1(·) and c2(·). The convexity of δ(·) automatically holds for
r1 ≥ 1, and condition (6) is likely to be satisfied when (i) as/aw is large; (ii) r1 is large; and (iii)
r2 is small. Intuitively, the equalizing effect triggered by the convex effort cost function becomes
greater when the contest is more asymmetric—i.e., when the ability ratio as/aw is large. Further,
this role is magnified when a team becomes less adapted to air pollution as it increases effort—i.e.,
when δ(·) is getting more convex—and when the equalizing effect triggered by the convexity of the
effort cost function is relative small—i.e., when C(·;λ) is getting less convex.

A.2.2 Impact of Air Pollution on Equilibrium Winning Probabilities

Next, we consider the impact of an air-quality shock on each team’s winning probability. Denote
team i’s equilibrium winning probability under contest ⟨cℓ(·), (as, aw)⟩ by p∗i,ℓ := x∗i,ℓ/X

∗
ℓ , with

ℓ ∈ {1, 2}. Propositions 1 and 2 already shed some light on the comparative statics. Recall by
Proposition 1, that x∗s,1 > x∗s,2 and X∗

1 > X∗
2 . In addition, x∗w,1 < x∗w,2 by Proposition 2(ii) if

r1 ≥ 1 and condition (6) is satisfied. Together, these imply that p∗s,1 = 1 − p∗w,1 = 1 − x∗w,1/X
∗
1 >

1−x∗w,2/X
∗
2 = 1−p∗w,2 = p∗s,2—i.e., the strong team is less likely to win as the air quality deteriorates.

However, it remains unknown whether the strong team’s equilibrium winning probability would
increase in the case in which air pollution discourages both teams’ effort incentive—e.g., where
δ′′(x) ≤ 0 for all x ≥ 0, as required in Proposition 2(ii).

Define ψ(x;λ) :=
[∂C(x;λ)

∂x + x∂2C(x;λ)
∂x2

]
/δ′(x). Our next result demonstrates that the strong

team’s equilibrium winning probability may increase or decrease and provides sufficient conditions
for each possibility to arise.

Proposition 3 (Impact of Air Pollution on Equilibrium Winning Probabilities) Suppose
that the two teams are heterogeneous—i.e., as > aw—and consider two strictly increasing and
weakly convex functions c1(·) and c2(·), with c1(0) = c2(0) = 0 and c′1(x) < c′2(x) for all x > 0.
The following statements hold as c(·) changes from c1(·) to c2(·):

(i) If ψ(x;λ) is strictly increasing in x for all λ ∈ [0, 1], then p∗s,1 < p∗s,2.

(ii) If ψ(x;λ) is strictly decreasing in x for all λ ∈ [0, 1], then p∗s,1 > p∗s,2.
37

By Proposition 3, the comparative statics of each team’s equilibrium winning probability de-
pends sensitively on the monotonicity of ψ(·;λ), which is closely related to the curvatures of
c1(·) and δ(·). To better understand the intuition, we illustrate with a parameterized exam-
ple. Set c1(x) = 1

2x
2 and δ(x) = 1

kx
k, with k ≥ 1. Simple algebra would then verify that

C(x;λ) = 1
2x

2 + λ 1
kx

k and thus ψ(x;λ) = λk + 2x2−k. Evidently, the monotonicity of ψ(·;λ) relies
on the comparison between k and 2, i.e., the convexity of δ(·) and that of c1(·). When δ(·) is more
convex—i.e, k > 2—air pollution erodes the advantage of the strong team as an equalizing device
and evens the odds, which leads to p∗s,1 > p∗s,2. Similarly, when δ(·) is less convex—i.e, k < 2—
air pollution further tilts the playing field in favor of the strong team and increases its winning
probability, i.e., p∗s,1 < p∗s,2.

37. It is straightforward to verify that p∗s,1 = p∗s,2 if ψ(x;λ) is constant with respect to x for all λ ∈ [0, 1], which

occurs when (i) cℓ(x) = αℓx, with α2 > α1 > 0, or (ii) cℓ(x) = βℓ
x2

2
, with β2 > β1 > 0.
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Proposition 3 demonstrates that the strong team’s equilibrium winning probability may increase
or decrease in a more polluted environment, depending on the convexity of the cost function as well
as the change in cost function due to the air-quality shock. More generally, the distributional effect
of air pollution on equilibrium outcomes is theoretically indeterminant. We next employ data from
the world’s largest eSports tournament and exploit its quasi-experimental setting to investigate the
distributional effects of air pollution.

Appendix B Proofs

Proof of Proposition 1

Proof. Part (ii) of the proposition follows from Proposition 2, and it suffices to prove parts (i)
and (iii). The equilibrium effort pair under contest ⟨c(·), (as, aw)⟩, which we denoted by (x∗s, x

∗
w),

is governed by the first-order conditions ∂πs(xs,x∗
w)

∂xs

∣∣
xs=x∗

s
= 0 and ∂πw(x∗

s ,xw)
∂xw

∣∣
xw=x∗

w
= 0, which can

be rewritten as follows:

asp
∗
w,ℓ = X∗

ℓ c
′
ℓ(x

∗
s,ℓ), awp

∗
s,ℓ = X∗

ℓ c
′
ℓ(x

∗
w,ℓ), for ℓ ∈ {1, 2}, (7)

where p∗i,ℓ := x∗i,ℓ/X
∗
ℓ is team i’s equilibrium winning probability under contest ⟨cℓ(·), (as, aw)⟩, as

defined in the main text.
We first show X∗

1 > X∗
2 . Suppose, to the contrary, that X∗

1 ≤ X∗
2 . Then we must have

p∗s,1 > p∗s,2; otherwise, we have that

as(1− p∗s,1) = X∗
1c

′
1(X

∗
1p

∗
s,1) ≤ X∗

2c
′
2(X

∗
2p

∗
s,2) = as(1− p∗s,2),

where the two equalities follow from (7) and inequality from the postulated X∗
1 ≤ X∗

2 , p
∗
s,1 ≤ p∗s,2,

and the definition of c1(·) and c2(·). A contradiction. Similarly, we can show p∗w,1 > p∗w,2 ifX
∗
1 ≤ X∗

2 .
Together, these imply that

1 = p∗s,1 + p∗w,1 > p∗s,2 + p∗w,2 = 1,

which is a contradiction.
Next, we show that x∗s,1 > x∗s,2. It is straightforward to verify that p∗s,ℓ >

1
2 > p∗w,ℓ for ℓ ∈ {1, 2}

given as > aw. If p
∗
s,1 ≥ p∗s,2, then x

∗
s,1 = X∗

1p
∗
s,1 > X∗

2p
∗
s,2 = x∗s,2. If p

∗
s,1 < p∗s,2, then we have that

x∗s,1c
′
1(x

∗
s,1) = p∗s,1X

∗
1c

′
1(x

∗
s,1) = asp

∗
s,1p

∗
w,1

> asp
∗
s,2p

∗
w,2 = p∗s,2X

∗
2c

′
2(x

∗
s,2) = x∗s,2c

′
2(x

∗
s,2) > x∗s,2c

′
1(x

∗
s,2),

where the first and fourth equalities follow from the definition of p∗i,ℓ; the second and third equalities
from (7); the first inequality from p∗w,ℓ = 1 − p∗s,ℓ and p∗s,1 < p∗s,2; and the last inequality from the
assumption that c′2(x) > c′1(x) for all x > 0. The above condition, together with the weak convexity
of c1(·), again implies x∗s,1 > x∗s,2. This concludes the proof.

Proof of Proposition 2

Proof. Fixing λ ∈ [0, 1], C(x;λ) := c1(x)+λδ(x) = λc2(x)+(1−λ)c1(x) is an increasing and convex
function of x. Denote the equilibrium effort pair under contest ⟨C(x;λ), (as, aw)⟩ by

(
x∗s(λ), x

∗
w(λ)

)
.
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It is evident that x∗w,1 = x∗w(0) and x
∗
w,2 = x∗w(1). Further, (7) can be rewritten as follows:

asx
∗
w(λ)[

x∗s(λ) + x∗w(λ)
]2 =

∂C
(
x∗s(λ);λ

)
∂x

, (8)

awx
∗
s(λ)[

x∗s(λ) + x∗w(λ)
]2 =

∂C
(
x∗w(λ);λ

)
∂x

. (9)

Taking derivative of (8) and (9) with respect to λ yields that

(x∗w)
′(λ) =

1

M

δ′
(
x∗s(λ)

) ∂C(x∗
w(λ);λ)
∂x

[
x∗s(λ)− x∗w(λ)

]
x∗s(λ)

[
x∗s(λ) + x∗w(λ)

]
−δ′

(
x∗w(λ)

)∂2C (
x∗w(λ);λ

)
∂x2

+
2
∂C(x∗

w(λ);λ)
∂x

x∗s(λ) + x∗w(λ)


 ,

where

M :=

∂2C (
x∗w(λ);λ

)
∂x2

+
2
∂C(x∗

w(λ);λ)
∂x

x∗s(λ) + x∗w(λ)


︸ ︷︷ ︸

>0

×

∂2C (
x∗s(λ);λ

)
∂x2

+
2
∂C(x∗

s(λ);λ)
∂x

x∗s(λ) + x∗w(λ)


︸ ︷︷ ︸

>0

+

∂C(x∗
s(λ);λ)
∂x

∂C(x∗
w(λ);λ)
∂x

[
x∗s(λ)− x∗w(λ)

]2
x∗s(λ)x

∗
w(λ)

[
x∗s(λ) + x∗w(λ)

]2︸ ︷︷ ︸
>0

> 0.

Therefore, (x∗w)
′(λ) > 0 is equivalent to

δ′
(
x∗s(λ)

)
δ′
(
x∗w(λ)

) × x∗s(λ)− x∗w(λ)

x∗s(λ) + x∗w(λ)︸ ︷︷ ︸
LHS

>
x∗s(λ)

x∗w(λ)
×

x∗w(λ)∂2C(x∗
w(λ);λ)
∂x2

∂C(x∗
w(λ);λ)
∂x

+
2x∗w(λ)

x∗s(λ) + x∗w(λ)


︸ ︷︷ ︸

RHS

.

We first prove part (i) of the proposition. Suppose that δ′′(x) ≤ 0 for all x ∈ [0, x]. Then we
can obtain

LHS ≤ x∗s(λ)− x∗w(λ)

x∗s(λ) + x∗w(λ)
<

2x∗s(λ)

x∗s(λ) + x∗w(λ)
≤ RHS,

where the first two inequalities follow from the weak concavity of δ(·) and x∗s(λ) > x∗w(λ) > 0 and
the last inequality from the convexity of C(·;λ). Therefore, x∗w(λ) is decreasing in λ for λ ∈ [0, 1],
which in turn implies that x∗w,2 = x∗w(1) < x∗w(0) = x∗w,1.

Next, we prove part (ii). For notational convenience, define k(λ) := x∗s(λ)/x
∗
w(λ) > 1. Recall
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r2 := supx∈[0,x],λ∈[0,1] x
∂2C(x;λ)

∂x2

/∂C(x;λ)
∂x . Then RHS can be bounded from above by

RHS ≡ x∗s(λ)

x∗w(λ)
×

x∗w(λ)∂2C(x∗
w(λ);λ)
∂x2

∂C(x∗
w(λ);λ)
∂x

+
2x∗w(λ)

x∗s(λ) + x∗w(λ)

 ≤ k(λ)×
(
r2 +

2

k(λ) + 1

)
. (10)

Further, it follows from ∂2C(x;λ)
∂x2

/∂C(x;λ)
∂x ≤ r2/x for x ∈

[
x∗w(λ), x

∗
s(λ)

]
that

ln

(
∂C(x∗s(λ);λ)

∂x

)
− ln

(
∂C(x∗w(λ);λ)

∂x

)
=

∫ x∗
s(λ)

x∗
w(λ)

∂2C(x;λ)
∂x2

∂C(x;λ)
∂x

dx

≤
∫ x∗

s(λ)

x∗
w(λ)

r2
x
dx = r2

[
ln
(
x∗s(λ)

)
− ln

(
x∗w(λ)

)]
.

The above inequality, together with (8) and (9), implies that

as
aw

=
x∗s(λ)

x∗w(λ)
×

∂C(x∗
s(λ);λ)
∂x

∂C(x∗
w(λ);λ)
∂x

≤
[
x∗s(λ)

x∗w(λ)

]r2+1

=⇒ k(λ) ≥
(
as
aw

) 1
r2+1

. (11)

By the same argument, we can obtain

δ′
(
x∗s(λ)

)
δ′
(
x∗w(λ)

) ≥
[
k(λ)

]r1 ,
where r1 := infx∈[0,x] xδ

′′(x)/δ′(x). Therefore, LHS can be bounded from below by

LHS ≡
δ′
(
x∗s(λ)

)
δ′
(
x∗w(λ)

) × x∗s(λ)− x∗w(λ)

x∗s(λ) + x∗w(λ)
≥

[
k(λ)

]r1 × k(λ)− 1

k(λ) + 1
. (12)

Combining (10) and (12), we can obtain that

RHS − LHS ≤ k(λ)×
(
r2 +

2

k(λ) + 1

)
−

[
k(λ)

]r1 × k(λ)− 1

k(λ) + 1

= k(λ)×

[(
r2 +

2

k(λ) + 1

)
−
[
k(λ)

]r1−1 × k(λ)− 1

k(λ) + 1

]

≤ k(λ)×


r2 + 2(

as
aw

) 1
r2+1

+ 1

−
(
as
aw

) r1−1
r2+1

×

(
as
aw

) 1
r2+1 − 1(

as
aw

) 1
r2+1

+ 1


︸ ︷︷ ︸

G

,

where the last inequality follows from r1 ≥ 1 and (11). Carrying out the algebra, G < 0 is equivalent
to

(
as
aw

) r1−1
r2+1

( as
aw

) 1
r2+1

− 1

 > r2

(
as
aw

) 1
r2+1

+ r2 + 2,
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which corresponds to (6) required in part (ii) of the proposition. To summarize, if r1 ≥ 1 and (6) is
satisfied, then (x∗w)

′(λ) > 0 for all λ ∈ [0, 1], which in turn implies that x∗w,2 = x∗w(1) > x∗w(0) = x∗w,1

and concludes the proof.

Proof of Proposition 3

Proof. Recall C(x;λ) := c1(x)+λδ(x) and that we denote the equilibrium effort pair under contest
⟨C(x;λ), (as, aw)⟩ by

(
x∗s(λ), x

∗
w(λ)

)
in the proof of Proposition 2. For notational convenience,

denote the resultant total effort and the corresponding equilibrium winning probabilities by X∗(λ)
and

(
p∗s(λ), p

∗
w(λ)

)
, respectively. The first-order conditions (8) and (9) can be rewritten as follows:

asp
∗
w(λ) = X∗(λ)

∂C
(
X∗(λ)p∗s(λ);λ

)
∂x

,

awp
∗
s(λ) = X∗(λ)

∂C
(
X∗(λ)p∗w(λ);λ

)
∂x

.

Taking derivative of the above two equations with respect to λ and exploiting the fact that
dp∗s(λ)/dλ = −dp∗w(λ)/dλ, we can obtain that

dp∗s(λ)

dλ
=
X∗(λ)δ′

(
x∗s(λ)

)
δ′
(
x∗w(λ)

) [
ψ
(
x∗s(λ);λ

)
− ψ

(
x∗w(λ);λ

)]
Q

,

where

Q :=

{
aw +

[
X∗(λ)

]2 × ∂2C(x∗w(λ);λ)
∂x2

}
︸ ︷︷ ︸

>0

ψ
(
x∗s(λ);λ

)︸ ︷︷ ︸
>0

δ′
(
x∗s(λ)

)︸ ︷︷ ︸
>0

+

{
as +

[
X∗(λ)

]2 ∂2C(x∗s(λ);λ)
∂x2

}
︸ ︷︷ ︸

>0

ψ
(
x∗w(λ);λ

)︸ ︷︷ ︸
>0

δ′
(
x∗w(λ)

)︸ ︷︷ ︸
>0

> 0.

Therefore, dp∗s(λ)/dλ > 0 is equivalent to

ψ
(
x∗s(λ);λ

)
> ψ

(
x∗w(λ);λ

)
.

Suppose that ψ(x;λ) strictly increases with x for all λ ∈ [0, 1]. It follows immediately from
x∗s(λ) > x∗w(λ) that ψ

(
x∗s(λ);λ

)
> ψ

(
x∗w(λ);λ

)
and thus dp∗s(λ)/dλ > 0. Therefore, we can obtain

that p∗s,2 = p∗s(1) > x∗s(0) = p∗s,1. Similarly, we can show p∗s,2 < p∗s,1 if ψ(x;λ) strictly decreases with
x for all λ ∈ [0, 1]. This concludes the proof.

Appendix C Multiple Players on Each Team

In the baseline model, we assume that a representative player acts on behalf of each team. Next,
we extend the model to allow for multiple players within a team and show that all of our results
continue to hold. To distinguish between the two settings, we call the former an individual contest
and the latter a group contest.

Suppose that each team has n ≥ 2 identical individual players. The players on team i ∈ {s, w}
are indexed by ij ∈ {i1, . . . , in}. Players in both teams simultaneously and independently choose
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effort levels xij ≥ 0. The cost of effort xij to player ij is c̃(xij)/ãi, where ãi > 0 represents the
team’s ability and c̃(·) is a strictly increasing and weakly convex function with c̃(0) = 0. The value
an individual player receives from winning the contest is again normalized to unity.

Following Kolmar and Rommeswinkel (2013); Brookins et al. (2018); and Crutzen et al. (2020),
we assume that the probability of team i ∈ {s, w} winning the contest given the effort profile
(xs,xw) := ⟨(xs1, . . . , xsn), (xw1, . . . , xwn)⟩ is

p̃i(xs,xw) =

 X̃i/(X̃s + X̃w) if X̃s + X̃w > 0,

1/2 if X̃s + X̃w = 0,

where X̃i is given by the constant elasticity of substitution (CES) aggregation function of the efforts
exerted by individual team members. That is,38

X̃i :=

 1

n

n∑
j=1

xρij

1/ρ

, for i ∈ {s, w}, with ρ < 1.

The parameter 1 − ρ measures the degree of complementarity between individual efforts within a
team.

The expected payoff of player ij is

π̃ij(xs,xw) := p̃i(xs,xw)− c̃(xij)/ãi, i ∈ {s, w}, j ∈ {1, . . . , n}.

The function c̃(·), together with teams’ ability profile (ãs, ãw) and the number of players in each
team n ≥ 2, defines a simultaneous-move group contest game, which we denote by ⟨c̃(·), (ãs, ãw), n⟩.
Denote player ij’s equilibrium effort by x̃∗ij . Recall that the individual contest game analyzed in
the main text is denoted by ⟨c(·), (as, aw)⟩. The following result ensues.

Proposition 4 There exists a unique pure-strategy equilibrium of the group contest game ⟨c̃(·), (ãs, ãw), n⟩,
in which all individual players on each team remain active and exert the same amount of effort—
i.e., x̃∗i1 = · · · = x̃∗in =: x̃∗i > 0 for i ∈ {s, w}. Furthermore, x̃∗i = x∗i for i ∈ {s, w}, where x∗i is the
equilibrium effort of team i under the individual contest ⟨c(·), (as, aw)⟩ = ⟨c̃(x), (ãs/n, ãw/n)⟩.

Proof. We first show that all individual players must exert the same amount of effort in equilib-
rium. Fix two arbitrary players ij and ij′, with i ∈ {s, w}, j, j′ ∈ {1, . . . , n}, and j ̸= j′. It is
straightforward to verify that an individual player must remain active in equilibrium. Therefore,
the following first-order conditions must be satisfied in equilibrium:

ãi

(
X̃s + X̃w − X̃i

)
(
X̃s + X̃w

)2 × ∂X̃i

∂x̃ij

∣∣∣∣
x̃ij=x̃∗

ij

= c̃′(x̃∗ij), (13)

and
ãi

(
X̃s + X̃w − X̃i

)
(
X̃s + X̃w

)2 × ∂X̃i

∂x̃ij′

∣∣∣∣
x̃ij′=x̃∗

ij′

= c̃′(x̃∗ij′), (14)

Suppose, to the contrary, that x̃∗ij ̸= x̃∗ij′ . Without loss of generality, assume x̃∗ij > x̃∗ij′ . It can

38. See also Ray et al. (2007) and Cornes and Hartley (2007) for the use of CES production functions.
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then be verified that ∂X̃i/∂x̃ij |x̃ij=x̃∗
ij
< ∂X̃i/∂x̃ij′ |x̃ij′=x̃∗

ij′
and c̃′(x̃∗ij) ≥ c̃′(x̃∗ij′), from which we can

obtain

c̃′(x̃∗ij)
/ ∂X̃i

∂x̃ij

∣∣∣
x̃ij=x̃∗

ij

> c̃′(x̃∗ij′)
/ ∂X̃i

∂x̃ij′

∣∣∣∣
x̃ij′=x̃∗

ij′

. (15)

However, combining (13) and (14) yields that

c̃′(x̃∗ij)
/ ∂X̃i

∂x̃ij

∣∣∣
x̃ij=x̃∗

ij

= c̃′(x̃∗ij′)
/ ∂X̃i

∂x̃ij′

∣∣∣∣
x̃ij′=x̃∗

ij′

,

which contradicts (15). Therefore, we must have x̃∗ij = x̃∗ij′ .
Next, substituting x̃∗i := x̃∗i1 = · · · = x̃∗in into (13) or (14) yields that

ãi
n

× x̃∗s + x̃∗w − x̃∗i
(x̃∗s + x̃∗w)

2
= c̃′(x̃∗i ), for i ∈ {s, w}. (16)

Note that the equilibrium effort of team i in the baseline model in the main text is governed by

ai ×
x∗s + x∗w − x∗i
(x∗s + x∗w)

2
= c̃′(x∗i ), for i ∈ {s, w}. (17)

Comparing (16) and (17), it is straightforward to see that x̃∗i = x∗i for i ∈ {s, w}, where x∗i in the
equilibrium effort of team i under individual contest ⟨c(·), (as, aw)⟩ = ⟨c̃(x), (ãs/n, ãw/n)⟩. This
concludes the proof.

By Proposition 4, the results established under individual contests in the main text remain
intact under group contests in which each team consists of two or more homogeneous players.

Appendix D Linear Quadratic Effort Cost

Example 1 (Linear Quadratic Effort Cost) Suppose that the two teams are heterogeneous—

i.e., as > aw—and the cℓ(·) function takes the form cℓ(x) = αℓx + βℓ
x2

2 , with α2 ≥ α1 ≥ 0,
β2 ≥ β1 ≥ 0, and ℓ ∈ {1, 2}. The following statements hold:

(i) Suppose that α2 > α1 = 0 and β2 = β1 > 0. In other words, we start with a quadratic c1(·)
function and add a linear component to obtain c2(·). Then δ(x) = (α2 − α1)x is linear and
thus δ′′(x) = 0. By Proposition 2(i), we can obtain x∗w,1 > x∗w,2.

(ii) Suppose that α2 = α1 > 0 and β2 > β1 = 0. That is, we start with a linear c1(·) function

and add a quadratic term to obtain c2(·). Then δ(x) = (β2 − β1)
x2

2 is convex and x = as,

from which we can obtain r1 = infx∈[0,x] xδ
′′(x)/δ′(x) = 1 and r2 = supx∈[0,as],λ∈[0,1]

β2λx
α2+β2λx

=
β2as

α2+β2as
. Note that r2 degenerates to zero as β2 approaches zero. With slight abuse of notation,

denote the equilibrium effort profile under c2(·) = α2x+ β2
x2

2 by
(
x∗s(β2), x

∗
w(β2)

)
. It follows

immediately that x∗w,1 = x∗w(0) and x∗w,2 = x∗w(β2). We can show that (x∗w)
′(0) > 0 if and

only if as/aw > 3.

Proof. First-order conditions (8) and (9) can be expressed as follows:

asx
∗
w(β2)[

x∗s(β2) + x∗w(β2)
]2 = α+ β2x

∗
s(β2), (18)
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awx
∗
s(β2)[

x∗s(β2) + x∗w(β2)
]2 = α+ β2x

∗
w(β2). (19)

Next, we show that (x∗w)
′(0) > 0 if and only if as/as > 3.

Substituting β2 = 0 into (18) and (19) yields that

asx
∗
w(0)[

x∗s(0) + x∗w(0)
]2 = α, (20)

awx
∗
s(0)[

x∗s(0) + x∗w(0)
]2 = α. (21)

Taking the derivatives of (18) and (19) with respect to β2 at β2 = 0 yields that

asx
∗
w(0)[

x∗s(0) + x∗w(0)
]2 ×

{
(x∗w)

′(0)

x∗w(0)
−

2
[
(x∗s)

′(0) + (x∗w)
′(0)

]
x∗s(0) + x∗w(0)

}
= x∗s(0), (22)

awx
∗
w(0)[

x∗w(0) + x∗w(0)
]2 ×

{
(x∗s)

′(0)

x∗s(0)
−

2
[
(x∗s)

′(0) + (x∗w)
′(0)

]
x∗s(0) + x∗w(0)

}
= x∗w(0). (23)

Combining (20), (21), (22), and (23), we have that

(x∗w)
′(0)

x∗w(0)
−

2
[
(x∗s)

′(0) + (x∗w)
′(0)

]
x∗s(0) + x∗w(0)

=
x∗s(0)

α
,

(x∗s)
′(0)

x∗s(0)
−

2
[
(x∗s)

′(0) + (x∗w)
′(0)

]
x∗s(0) + x∗w(0)

=
x∗w(0)

α
,

from which we can obtain that

(x∗w)
′(0) =

x∗s(0)x
∗
w(0)

[
x∗s(0)− 3x∗w(0)

]
α
[
x∗s(0) + x∗w(0)

] .

Note that x∗s(0)/x
∗
w(0) = as/aw from (20) and (21). Therefore, (x∗w)

′(0) > 0 if and only if
x∗s(0)/x

∗
w(0) > 3, which is equivalent to as/aw > 3. This concludes the proof.

Next, we demonstrate how the conditions established in Proposition 3 translate into the pa-
rameters of the linear quadratic effort cost function. Simple algebra would verify

ψ(x;λ) =

∂C(x;λ)
∂x + x∂2C(x;λ)

∂x2

δ′(x)
=

[
α1 + λ(α2 − α1)

]
+ 2

[
β1 + λ(β2 − β1)

]
x

(α2 − α1) + (β2 − β1)x
.

Example 1 (Continued, Linear Quadratic Effort Cost) The following statements hold:

(i) Suppose that α2 > α1 = 0 and β2 = β1 > 0. Then ψ(x;λ) =
(

α1
α2−α1

+ λ
)

+ 2β1

α2−α1
x, which strictly increases with x. By Proposition 3(i), we have that p∗s,1 < p∗s,2.

(ii) Suppose that α2 = α1 > 0 and β2 > β1 = 0. Then ψ(x;λ) = 2
( β1

β2−β1
+ λ

)
+ α1

(β2−β1)x
, which

strictly decreases with x. By Proposition 3(ii), we have that p∗s,1 > p∗s,2.
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Appendix E Background and Game Mechanics of LoL

E.1 The ESports Industry

ESports is a rapidly growing form of video game-based team sports in a professional compet-
itive tournament setting. In general, competitors play video games while being watched by a live
audience as well as millions more online. The global eSports audience reached 474 million in 2021,
and is expected to reach 577 million in 2024. Goldman Sachs predicts that by 2022, the market
for eSports will be $2.96 billion,39 which has already exceeded those of several traditional sports
markets, including Major League Baseball (MLB) and the National Basketball Association (NBA).
The prize money in top eSports tournaments is also comparable to traditional sports. The most
viewed tournament, the International 2019—which took place in Shanghai—has a total prize pool
of $34.3 million.40 China is the leading market for eSports, grossing a total of $360 million in 2021,
owing to the popularity of eSports among millennial youth and government support.41 The United
States is the second largest eSports market, with total revenues at $243 million in 2021, followed
by Western Europe at $206 million.

Compared with traditional sports, eSports has its fair share of professional players, commenta-
tors, and celebrities. Leading players, like their more traditional star athlete counterparts, become
LeBron-like superstars to digital native millennial audiences that find them more directly relatable.
According to a recent report by Forbes, League of Legends superstar Faker, for example, makes
more than $2 million annually—and that number does not include sponsorship revenues.

E.2 LoL Game Mechanics

E.2.1 Overview

League of Legends (LoL) is a multiplayer online battle arena (MOBA) game. Like other eSports
games and traditional sports, LoL has a clear game objective and well-defined rules. Two teams of
five players compete against each other. A team wins when the opponent’s homebase is destroyed
or when the opponent surrenders. The match sets no fixed time limit, but is very fast paced. In
our data of top-tier tournament matches, a match lasts 33 mins on average, and ranges from 16
mins to 68 mins.

At the beginning of the game, each player takes turns selecting their champion (avatar), which
has unique abilities and base statistics such as health, speed, and strength. The roster of champions
is balanced in the sense that each champion has strengths and weaknesses, and may counter certain
champions and be countered. Upon finishing champion selection, all champions are placed on a
large symmetrical map, called the Summoner’s Rift, and the competition begins.

E.2.2 The Battle Map

Figure B1 shows the map layout and basic game mechanics. All champions spawn—and respawn
if killed—in their team’s homebase; the homebases are located at the opposing corners of the map

39. See the Goldman Sachs report entitled “ESports: From Wild West to Mainstream” at https://

www.goldmansachs.com/insights/pages/infographics/e-sports/report.pdf.
40. The NBA Championship has a total prize pool of $13 million in 2018, Masters (golf) $11 million, Tour de

France $2.8 million, Melbourne Cup $6.2 million, and Confederations Cup $20 million.
41. For example, Hangzhou, the capital of Zhejiang Province in Eastern China, plans to build 14 eSports facilities

before 2022 and is expected to invest up to RMB 15.5 billion (USD 2.22 billion). This investment is expected to
make it the eSports capital of the world. Moreover, Hangzhou is going to host the Asian Games in 2022, in which
eSports is already an official medal event.
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and are defended by turrets and AI-controlled minions.
The map has three lanes: a top lane, a middle diagonal lane, and a bottom lane. They separately

cut through the top, middle, and bottom portions of the map. Moreover, each of the lanes is home
to a specific type of champion: Although this is not required, the game has developed an almost
universal metagame, and now most team tactics have agreed on which champion type is prioritized
for each lane.

In between these lanes is a jungle full of neutral monsters. Players kill the opposing team’s
champions, minions, and neutral monsters to earn gold that can be used to purchase in-game items
to boost their champion’s abilities and other aspects of gameplay.

E.2.3 Role of Champion

The LoL game community has developed an almost universal metagame for each role of the
team. The five team members fall into five roles: top-laner, attack damage carry (ADC), support,
jungler, and mid-laner. The top-laner is the solo defensive player of the team who holds against
the high-powered attack duo from the enemy’s bottom lane. The bottom lane usually consists of
two players, the ADC and the support. The ADC is essentially the firepower of the team, but is
also the most vulnerable one. The support is ADC’s safety guard, providing him with healing and
shields and setting up kills. The jungler is the assassin; she plays in the jungle rather than in any
lane, killing neutral monsters, and hiding and waiting for the opportunity to pop into a lane to give
his teammates a competitive edge over the opposing team. The mid-laner is the do-it-all member
of the team, and generally plays solo in the early game but is prepared to help the other lanes if
the jungler is dead or preoccupied.

E.2.4 Phases of Game

A game is split into two phases, a preparation phase when teams choose active players and
players choose champions, and a competition phase when the competition begins.

The Preparation Phase This is the pre-match phase. Teams first decide on the roster of
five active players. Then, players from both teams take turns banning and picking champions.
Each player can choose to ban one champion (5 bans per team) from the champion pool before
picking their own champion. In professional matches in which teams are familiar with each other,
champions that rival players can play exceptionally well are strategically banned to deter the pick.
Players may also pick a champion not for their own good, but to secure it for their teammates, or
simply prevent it from being picked by the rival team. Each team is allowed to swap champions
between teammates at the end of the preparation phase. Considering that champions have different
skills, some of which counter other champions or have been countered, this makes the banning and
picking of champions extremely strategic in this pre-match phase. After the picking is finished,
team members have a chance to swap champions with teammates before heading into competition.

The Competition Phase At the beginning of the competition phase, players enter their desig-
nated lanes or areas, battle against their opponent counterparts, kill enemy minions for gold, and
try to get an advantage over the enemy laners when possible. Junglers run around to help their
laners; they also reconnoitre the map so that their team can have a better idea of what the enemy
is doing. At this point, players are weaker than the defensive turrets on the map so that it is hard
for either them to push into the enemy’s territory.
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After players have grown stronger and the first few turrets have been taken down, the mid-game
tends to revolve around the two major neutral monsters—the Drakes and the Baron, both of which
reward massive gold and team perks. Teams often fight over these mid-game objectives as five-man
units, trying to both deny these monsters to the enemy and win them for themselves.

In the late game, most champions have reached their maximum strength and the game becomes
one of cat-and-mouse. Even a small mistake can lead to a near-instant victory for the enemy. As
such, the late game is spent mostly trying to gain more vision around the map in an attempt to
catch enemies or to sneak a kill on the Baron without enemy interference.

E.3 LoL Tournaments in China

The League of Legends Pro League (LPL) is the top-tier LoL professional tournament in China
and the world’s largest professional LOL tournament. The first season of LPL was in 2013. Since
then, each year hosts two tournament seasons, in spring and summer. Each LPL season has regular-
season games and playoffs, and the format is similar to other popular sports events such as the
NBA. In the regular season, all teams compete in a single round robin—i.e., each team competes
against all other teams in turn. Matches are all best of three and the winner takes one point. Top
teams from the regular season advance to the playoffs. Playoff matches are best of five. Teams
compete by elimination. The final winner takes about 40% of the prize pool, which totaled 3.5
million RMB in the 2019 summer season. Overall, the LPL tournament is held in a format similar
to other competitive leagues such as the NBA and NFL. We collect game statistics from all matches
of LPL regular seasons and playoffs from 2017 to 2021.

The list of host cities is determined prior to the regular season. Three to five cities jointly host
each season. From 2017 to 2021, 11 cities have hosted the tournament. Shanghai has hosted most
LPL tournament games so far (64%). Appendix Table A1 tabulates the number of matches hosted
by different cities. The tournament schedule is also predetermined, including both the match date
and the pairing of teams. The spring season starts in January and the summer season in June, and
both last about 10 weeks.

All regular season and playoff matches are hosted in large indoor stadiums. We collect the
location of the hosting stadiums and match them to the nearest national air pollution monitoring
stations. All stadiums have standard temperature control systems. However, air pollutants, and
PM2.5 in particular, exchanged between outdoor and indoor environments are not filtered. The
environmental literature documents that PM2.5 penetrate indoors, with an indoor-outdoor ratio
ranging from 0.6 to 0.9 (Huang et al., 2007; Chen and Zhao, 2011; Nadali et al., 2020). We use the
level of hourly reported outdoor PM2.5 from the nearest national monitoring stations as the proxy
for the level of indoor PM2.5 players were exposed to during the game.
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Appendix F Tables

TABLE A1
Number of Historical Matches Held and Homebase of Teams Across Cities

(1) (2) (3) (4)

Host City Num. Matches Share HomeBase City Num. Teams Share

Shanghai 1,689 64.03 Shanghai 12 44.44

Hangzhou 212 8.04 Beijing 3 11.11

Beijing 203 7.70 Wuhan 3 11.11

Xi’an 128 4.85 Shenzhen 2 7.41

Chongqing 126 4.78 Suzhou 2 7.41

Chengdu 120 4.55 Guangzhou 1 3.7

Suzhou 76 2.88 Chengdu 1 3.7

Shenzhen 53 2.01 Hangzhou 1 3.7

Nanjing 16 0.61 Xi’an 1 3.7

Guangzhou 12 0.45 Chongqing 1 3.7

Foshan 3 0.11

Total 816 100 Total 27 100

Notes: This table presents the total number of historical LPL matches held and homebase of teams across cities

during the sample period from 2017 to 2021 (10 spring seasons and 10 summer seasons).
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TABLE A2
Summary Statistics for Player Performance

(1) (2) (3) (4)

Variable Mean S.D. Min Max

Panel A: Measures of Player Decision in Competition Phase

Win 0.50 0.50 0 1

Kill 2.54 2.48 0 18

Assist 6.01 4.17 0 30

Death 2.54 1.79 0 13

Gold 11,839 3,556 3,311 40,511

Kill per 10 min. 0.79 0.78 0 6.79

Assist per 10 min. 1.85 1.31 0 11.73

Gold per 10 min. 3,607 811 1,737 6,526

Panel B: Measures of Player Decision in Preparation Phase

Decision time (sec.) 17.74 8.39 0 30

Frequency of pick-and-switch 0.64 1.63 0 28

Using less frequent champion 0.09 0.29 0 1

Notes: This table presents summary statistics of performance metrics at player level. Panel A presents the post-

game statistics at the competition phase; Panel B presents the pre-game statistics at the preparation phase. See

variable definitions in Table 1.
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TABLE A3
Average Effects of PM2.5 on Player Performance

(1) (2) (3) (4) (5) (6) (7)

Total Per 10 Mins

Win Kill Assist Gold Kill Assist Gold

PM2.5 -0.001 -0.007 -0.035*** -28.182*** -0.000 -0.006 -1.871

(0.002) (0.007) (0.013) (8.896) (0.002) (0.004) (1.713)

Player FE Yes Yes Yes Yes Yes Yes Yes

Champion FE Yes Yes Yes Yes Yes Yes Yes

Role FE Yes Yes Yes Yes Yes Yes Yes

Team-Pair FE Yes Yes Yes Yes Yes Yes Yes

Match-Type FE Yes Yes Yes Yes Yes Yes Yes

City×Year×Month FE Yes Yes Yes Yes Yes Yes Yes

Day-of-Week and Holiday FE Yes Yes Yes Yes Yes Yes Yes

Observations 26,090 26,090 26,090 26,090 26,090 26,090 26,090

R-squares 0.229 0.304 0.263 0.502 0.308 0.279 0.710

Notes: This table presents the average effects of the level of PM2.5 on metrics of competitive performance of individual player. The dependent variable is the

indicator for winning (Column 1), the total amount of kills, assists, and gold (Columns 2-4), and their per-minute counterparts (Columns 5-7). PM2.5 is the

level of PM2.5 (in 10 µg/m3) at the hour of the match near the match stadium. The player-level regressions across columns control for player fixed effects,

champion fixed effects, role-of-team fixed effects, team pair fixed effects, match-type fixed effects, city-by-year-by-month fixed effects, and day-of-week and public

holiday fixed effects. Robust standard errors in parentheses are clustered at player-by-season level. *** p <0.01, ** p <0.05, * p <0.1.
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TABLE A4
Correlation of Measures of Team’s Competitiveness

Panel A: Correlation of Competitiveness Index

Competitiveness Competitiveness Competitiveness

(Model 1) (Model 2) (Model 3)

Competitiveness (Model 1) 1

Competitiveness (Model 2) 0.9955 1

Competitiveness (Model 3) 0.7231 0.7087 1

Panel B: Correlation of Team Ranking based on Competitiveness Index

Team Rank Team Rank Team Rank

(Model 1) (Model 2) (Model 3)

Team Rank (Model 1) 1

Team Rank (Model 2) 1 1

Team Rank (Model 3) 0.8516 0.8516 1

Notes: This table presents the correlation of measures of team’s relative competitiveness (Panel A) and the cor-

relation of indicators for the stronger team, defined as the team’s competitiveness being higher than the sample

median (Panel B). Model 1 computes the competitiveness using each team’s average winning rate in all regular-

season games. Model 2 computes the competitiveness as the computed team fixed effect (δ̂i) from regressing

Winijct = δi + ηj + Cityc + Y eart +Montht + µijct. Model 3 computes the competitiveness as the computed team

fixed effect (δ̂i) using Equation (3). See Equation (3) for discussion of the three models.
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TABLE A5
Effects of PM2.5 on Teams’ Performance Gap

(1) (2) (3) (4) (5) (6)

Gap in total Gap in every 10 mins

Kill Assist Gold Kill Assist Gold

PM2.5 0.100** 0.182* 74.350* 0.038** 0.073* 30.520*

(0.049) (0.109) (43.146) (0.018) (0.040) (16.958)

Team-Pair FE Yes Yes Yes Yes Yes Yes

Match-Type FE Yes Yes Yes Yes Yes Yes

City×Year and Month FE Yes Yes Yes Yes Yes Yes

Day-of-Week and Holiday FE Yes Yes Yes Yes Yes Yes

Observations 2,611 2,611 2,611 2,611 2,611 2,611

R-squares 0.139 0.133 0.159 0.160 0.141 0.155

Mean of Gaps 9.17 23.80 10265.8 3.01 7.71 3330.5

Notes: This table presents the effects of PM2.5 on teams’ performance gap. The dependent variable is the absolute

difference in measures of competitive performance between teams in a matchup, including the total number of kills,

assists, and gold in a match (Columns 2-4), and their per-10-minute counterparts (Columns 5-7). PM2.5 is the level

of PM2.5 (in 10 µg/m3) at the hour of the match. Regressions control for team-pair fixed effects, match-type fixed

effects, city-by-year and month fixed effects, and day-of-week and public holiday fixed effects. Further details are

specified in Equation (2). Robust standard errors in parentheses are clustered at team-pair level. *** p <0.01, ** p

<0.05, * p <0.1.
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TABLE A6
Distributional Effects of PM2.5 on Multiple Kills

(1) (2) (3)

Any multiple kills Number of multiple kills Share of multiple kills in

total kills

PM2.5 -0.0057 -0.0736* -0.0030

(0.0050) (0.0377) (0.0024)

PM2.5×Rel.Strong 0.0100* 0.1169*** 0.0046*

(0.0058) (0.0408) (0.0027)

Team-pair FE Yes Yes Yes

Match-Type FE Yes Yes Yes

City×Year×Month FE Yes Yes Yes

Day-of-Week and Holiday FE Yes Yes Yes

Observations 5,222 5,222 5,194

R-squares 0.1679 0.1696 0.1498

Mean Dep. Var. 0.663 3.926 0.251

Notes: This table presents the distributional effects of PM2.5 on team’s likelihood of achieving multiple kills in com-

petition. The dependent variable is the indicator of multiple kills (Column 1), the number of multiple kills (Columns

2-4), and the share of multiple kills in total number of kills (Column 3). PM2.5 is the level of PM2.5 (in 10 µg/m3)

at the hour of the match. Regressions control for team-pair fixed effects, match-type fixed effects, city-by-year-by-

month fixed effects, and day-of-week and public holiday fixed effects. Team’s competitiveness is computed as the

team fixed effects from Equation (3). Further details are specified in Section 3.2. Robust standard errors in paren-

theses are clustered at team-by-season level. *** p <0.01, ** p <0.05, * p <0.1.
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TABLE A7
Effects of PM2.5 on the Prediction Accuracy of Match Outcome

(1) (2) (3) (4) (5) (6)

Predicted outcome being the same as actual outcome

Prediction by Quantile Ranking Prediction by Competitiveness Index

Full Sample Exclude Same

Quantiles

Same Quantiles Full Sample Exclude Similar

Competitiveness

Similar

Competitiveness

PM2.5 0.0119*** 0.0130*** 0.0000 0.0143*** 0.0158*** 0.0089

(0.0033) (0.0036) (0.0155) (0.0033) (0.0038) (0.0115)

Team-Pair FE Yes Yes Yes Yes Yes Yes

Match-Type FE Yes Yes Yes Yes Yes Yes

City×Year×Month FE Yes Yes Yes Yes Yes Yes

Day-of-Week and Holiday FE Yes Yes Yes Yes Yes Yes

Observations 5,222 4,286 936 5,222 4,176 1,046

R-squares 0.2057 0.2276 0.1158 0.2033 0.2326 0.2933

Mean Dep. Var. 0.608 0.620 0.500 0.619 0.630 0.582

Notes: This table shows that air pollution reduces the unpredictability of the match. We predict the match outcome (win or loss) based on the ranking of team’s

competitiveness index (see Equation 3). In Columns (1) to (3), we define five quantiles of the competitiveness index, and predict a team to be the winner of the

match if a team has a higher quantile than the rival team. In Column (4), we predict a team would win the match if having a higher competitiveness index than

its rival. In Columns (5) and (6), we define two teams have similar competitiveness if the difference of their indices is smaller than 20th percentile. We then

define an indicator of prediction accuracy if predicted outcome is the same as the actual outcome. PM2.5 is the level of PM2.5 (in 10 µg/m3) at the hour of

the match. Regressions control for team-pair fixed effects, match-type fixed effects, city-by-year-by-month fixed effects, and day-of-week and public holiday fixed

effects. Robust standard errors in parentheses are clustered at team-by-season level. *** p <0.01, ** p <0.05, * p <0.1.
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TABLE A8
Effects of PM2.5 on Match Intensity

(1) (2) (3) (4) (5) (6)

Total (both teams combined) Total per 10 mins

Kill Assist Damages

to

champions

Kill Assist Damages

to

champions

PM2.5 -0.155** -0.453** -938.130** -0.021 -0.071 -34.193**

(0.077) (0.192) (372.125) (0.022) (0.052) (13.666)

Team-Pair FE Yes Yes Yes Yes Yes Yes

Match-Type FE Yes Yes Yes Yes Yes Yes

City×Year and Month FE Yes Yes Yes Yes Yes Yes

Day-of-Week and Holiday FE Yes Yes Yes Yes Yes Yes

Observations 2,611 2,611 2,611 2,611 2,611 2,611

R-squares 0.052 0.035 0.054 0.103 0.072 0.055

Notes: This table presents the effects of PM2.5 on match intensity. The dependent variable is the summed perfor-

mance metrics from both teams in a matchup, including the total number of kills, assists, and damages dealt to

champions (Columns 1-3), and their per-10-minute counterparts (Columns 4-6). PM2.5 is the level of PM2.5 (in 10

µg/m3) at the hour of the match. Regressions control for team-pair fixed effects, match-type fixed effects, city-by-year

and month fixed effects, and day-of-week and public holiday fixed effects. Further details are specified in Equation

(2). Robust standard errors in parentheses are clustered at team-by-season level. *** p <0.01, ** p <0.05, * p <0.1.
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TABLE A9
Correlation of Last-season Performance and Current-season Pollution

(1) (2) (3)

Average Performance in Last Season Against the Same Rival

Win Kill/min Assist/min

PM2.5 in Current Season -0.00022 0.00012 0.00071

(0.00059) (0.00041) (0.00104)

Team-Pair FE Yes Yes Yes

Observations 1,450 1,450 1,450

R-squared 0.515 0.579 0.532

Notes: This table presents the correlation between a team’s average performance with respect to a rival in the last

season and the level of PM2.5 in the current season. Robust standard errors in parentheses are clustered at the team

level. *** p <0.01, ** p <0.05, * p <0.1.
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TABLE A10
Robustness to Inclusion of Hour-of-Day FEs

(1) (2) (3) (4) (5) (6) (7)

Total Per 10 Mins

Win Kill Assist Gold Kill Assist Gold

PM2.5 -0.009** -0.150** -0.475*** -271.828** -0.039** -0.124*** -46.930***

(0.004) (0.060) (0.151) (118.724) (0.018) (0.045) (17.980)

PM2.5×Rel.Strong 0.019*** 0.268*** 0.680*** 276.489* 0.088*** 0.218*** 91.479***

(0.006) (0.069) (0.170) (144.277) (0.021) (0.051) (22.305)

Hour-of-Day FE Yes Yes Yes Yes Yes Yes Yes

Team-Pair FE Yes Yes Yes Yes Yes Yes Yes

Match-Type FE Yes Yes Yes Yes Yes Yes Yes

City×Year×Month FE Yes Yes Yes Yes Yes Yes Yes

Day-of-Week and Holiday FE Yes Yes Yes Yes Yes Yes Yes

Observations 5,222 5,222 5,222 5,222 5,222 5,222 5,222

R-squares 0.197 0.213 0.186 0.234 0.248 0.212 0.235

Notes: This table tests the robustness of our baseline results after additionally controlling for the hour-of-day FEs. The dependent variable is the indicator of

win (Column 1), the number of kills, assists, and gold (Columns 2-4), and their per-10-minute counterparts (Columns 5-7). PM2.5 is the level of PM2.5 at

the hour of the match. Rel.Strong is a dummy variable indicating the team’s competitiveness index ranks higher than the rival team in the matchup. Team’s

competitiveness is computed as the team fixed effects from Equation (3). Further details are specified in Section 3.2. Robust standard errors in parentheses are

clustered at team-by-season level. *** p <0.01, ** p <0.05, * p <0.1.
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TABLE A11
Robustness to the Inclusion of City-by-date FEs

(1) (2) (3) (4) (5) (6) (7)

Total Per 10 Mins

Win Kill Assist Gold Kill Assist Gold

PM2.5 -0.009 -0.400* -1.174* -786.805** -0.076 -0.237 -78.659

(0.016) (0.229) (0.597) (371.112) (0.067) (0.175) (58.177)

PM2.5×Rel.Strong 0.019*** 0.268*** 0.680*** 276.489*** 0.088*** 0.218*** 91.479***

(0.006) (0.059) (0.152) (74.069) (0.020) (0.050) (22.760)

Team-Pair FE Yes Yes Yes Yes Yes Yes Yes

Match-Type FE Yes Yes Yes Yes Yes Yes Yes

City×Date FE Yes Yes Yes Yes Yes Yes Yes

Day-of-Week and Holiday FE Yes Yes Yes Yes Yes Yes Yes

Observations 5,222 5,222 5,222 5,222 5,222 5,222 5,222

R-squares 0.197 0.315 0.294 0.423 0.327 0.292 0.258

Notes: This table presents the distributional effects of PM2.5 on team’s competitive performance after including the city-by-date FEs. The dependent variable is

the indicator of win (Column 1), the number of kills, assists, and gold (Columns 2-4), and their per-10-minute counterparts (Columns 5-7). PM2.5 is the level of

PM2.5 (in 10 µg/m3) at the hour of the match. Rel.Strong is a dummy variable indicating the team’s competitiveness index ranks higher than the rival team

in the matchup. Team’s competitiveness is computed as the team fixed effects from Equation (3). Regressions control for team-pair fixed effects, match-type

fixed effects, city-by-date fixed effects, and day-of-week and public holiday fixed effects. Further details are specified in Equation (2). Robust standard errors in

parentheses are clustered at team-by-season level. *** p <0.01, ** p <0.05, * p <0.1.
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TABLE A12
Robustness to Controlling for Dynamic Effects from Previous Matches

(1) (2) (3) (4) (5) (6) (7)

Total Per 10 Mins

Win Kill Assist Gold Kill Assist Gold

PM2.5 -0.009** -0.149** -0.474*** -252.739** -0.039** -0.126*** -46.173**

(0.004) (0.058) (0.144) (125.097) (0.017) (0.042) (17.874)

PM2.5×Rel.Strong 0.019*** 0.261*** 0.660*** 273.946* 0.085*** 0.209*** 89.555***

(0.006) (0.069) (0.169) (155.581) (0.020) (0.051) (22.475)

MatchOrder×LastWin FE Yes Yes Yes Yes Yes Yes Yes

Team-Pair FE Yes Yes Yes Yes Yes Yes Yes

Match-Type FE Yes Yes Yes Yes Yes Yes Yes

City×Year×Month FE Yes Yes Yes Yes Yes Yes Yes

Day-of-Week and Holiday FE Yes Yes Yes Yes Yes Yes Yes

Observations 5,222 5,222 5,222 5,222 5,222 5,222 5,222

R-squares 0.198 0.216 0.189 0.232 0.252 0.216 0.235

Notes: This table presents the distributional effects of the level of PM2.5 on metrics of competitive performance of individual player (Panel A) and team (Panel

B). The player-level regression is specified in Equation (2). The dependent variable is the indicator for winning (Column 1), the total amount of kills, assists,

and gold (Columns 2-4), and their per-minute counterparts (Columns 5-7). PM2.5 is the level of PM2.5 (in 10 µg/m3) at the hour of the match near the match

stadium. Rel.Strong is a dummy variable indicating the team’s competitiveness is higher than the rival team in the matchup. Each team’s competitiveness is

computed as the team fixed effects from Equation (3). See table notes in Table 3 for regression specifications. *** p <0.01, ** p <0.05, * p <0.1.
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TABLE A13
Robustness Check with the Inclusion of Weather Conditions

(1) (2) (3) (4) (5) (6) (7)

Total Per 10 Mins

Win Kill Assist Gold Kill Assist Gold

PM2.5 -0.010* -0.156** -0.486*** -270.050* -0.041** -0.129*** -47.787**

(0.005) (0.067) (0.165) (147.973) (0.019) (0.048) (21.556)

PM2.5×Rel.Strong 0.021*** 0.263*** 0.670*** 282.268* 0.086*** 0.215*** 92.808***

(0.006) (0.071) (0.174) (167.150) (0.020) (0.051) (23.612)

Weather Controls Yes Yes Yes Yes Yes Yes Yes

Team-Pair FE Yes Yes Yes Yes Yes Yes Yes

Match-Type FE Yes Yes Yes Yes Yes Yes Yes

City×Year×Month FE Yes Yes Yes Yes Yes Yes Yes

Day-of-Week and Holiday FE Yes Yes Yes Yes Yes Yes Yes

Observations 4,126 4,126 4,126 4,126 4,126 4,126 4,126

R-squares 0.185 0.217 0.192 0.215 0.243 0.211 0.221

Notes: This table presents the distributional effects of PM2.5 on team’s competitive performance after including the set of weather conditions. The dependent

variable is the indicator of win (Column 1), the number of kills, assists, and gold (Columns 2-4), and their per-10-minute counterparts (Columns 5-7). PM2.5

is the level of PM2.5 (in 10 µg/m3) at the hour of the match. Rel.Strong is a dummy variable indicating the team’s competitiveness index ranks higher than

the rival team in the matchup. Team’s competitiveness is computed as the team fixed effects from Equation (3). Weather controls include flexible bins of tem-

perature, precipitation, sunshine, humidity, wind speed, as well as an indicator for bad weather. The indicator equals one if any of the weather variables—i.e.,

temperature, precipitation, sunshine, humidity, and wind speed—exceeds 90% percentile cutoff of sample values and zero otherwise. Regressions control for

team-pair fixed effects, match-type fixed effects, city-by-year-by-month fixed effects, and day-of-week and public holiday fixed effects. Further details are specified

in Equation (2). Robust standard errors in parentheses are clustered at team-by-season level. *** p <0.01, ** p <0.05, * p <0.1.
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TABLE A14
Distributional Effects of PM2.5 on Player Performance

(1) (2) (3) (4) (5) (6) (7)

Total Per 10 Mins

Win Kill Assist Gold Kill Assist Gold

PM2.5 -0.011*** -0.037*** -0.102*** -56.550*** -0.011*** -0.028*** -11.983***

(0.002) (0.008) (0.015) (12.091) (0.002) (0.005) (2.032)

PM2.5×Rel.Strong 0.019*** 0.060*** 0.134*** 55.897*** 0.020*** 0.044*** 19.925***

(0.002) (0.011) (0.018) (15.282) (0.003) (0.006) (2.599)

Player FE Yes Yes Yes Yes Yes Yes Yes

Champion FE Yes Yes Yes Yes Yes Yes Yes

Role FE Yes Yes Yes Yes Yes Yes Yes

Team-Pair FE Yes Yes Yes Yes Yes Yes Yes

Match-Type FE Yes Yes Yes Yes Yes Yes Yes

City×Year×Month FE Yes Yes Yes Yes Yes Yes Yes

Day-of-Week and Holiday FE Yes Yes Yes Yes Yes Yes Yes

Observations 26,090 26,090 26,090 26,090 26,090 26,090 26,090

R-squares 0.231 0.305 0.264 0.503 0.309 0.281 0.711

Notes: This table presents the results of regressing Equation (2) at player level and controlling for player FEs, champion FEs, and the role of team FEs. Robust

standard errors in parentheses are clustered at player-by-season level. *** p <0.01, ** p <0.05, * p <0.1.
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TABLE A15
Distributional Effects of PM2.5 on Player Performance

(1) (2) (3) (4) (5) (6) (7)

Total Per 10 Mins

Win Kill Assist Gold Kill Assist Gold

PM2.5 -0.001 -0.007 -0.036*** -28.660*** -0.001 -0.007* -2.029

(0.002) (0.007) (0.012) (8.513) (0.002) (0.004) (1.597)

PM2.5×Gap 0.068*** 0.174*** 0.397*** 187.724*** 0.054*** 0.120*** 62.310***

(0.007) (0.038) (0.066) (47.708) (0.012) (0.021) (8.287)

Player FE Yes Yes Yes Yes Yes Yes Yes

Champion FE Yes Yes Yes Yes Yes Yes Yes

Role FE Yes Yes Yes Yes Yes Yes Yes

Team-Pair FE Yes Yes Yes Yes Yes Yes Yes

Match-Type FE Yes Yes Yes Yes Yes Yes Yes

City×Year×Month FE Yes Yes Yes Yes Yes Yes Yes

Day-of-Week and Holiday FE Yes Yes Yes Yes Yes Yes Yes

Observations 26,090 26,090 26,090 26,090 26,090 26,090 26,090

R-squares 0.231 0.305 0.264 0.503 0.309 0.280 0.711

Notes: This table presents the results of regressing Equation (4) at player level and controlling for player FEs, champion FEs, and the role of team FEs. Robust

standard errors in parentheses are clustered at player-by-season level. *** p <0.01, ** p <0.05, * p <0.1.
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TABLE A16
Effects of Air Pollution on Competitive Performance Using the Concentration of

Other Main Air Pollutants

(1) (2) (3) (4)

Dependent variable: Win

Type of Air Pollutant PM10 AQI SO2 O3

Pollutant -0.011*** -0.008** -0.049 -0.001

(0.004) (0.004) (0.034) (0.002)

Pollutant×Rel.Strong 0.021*** 0.017*** 0.099*** 0.002

(0.005) (0.004) (0.035) (0.003)

Team-Pair FE Yes Yes Yes Yes

Match-Type FE Yes Yes Yes Yes

City×Year×Month FE Yes Yes Yes Yes

Day-of-Week and Holiday FE Yes Yes Yes Yes

Observations 5,186 5,222 5,222 5,222

R-squares 0.199 0.197 0.196 0.195

Notes: This table presents the effects of the level of other main air pollutants on a team’s winning probability. The

dependent variable is the indicator for winning. Pollutant is the concentration level of PM10, AQI, SO2 and O3

in Columns (1) to (4), respectively. Rel.Strong is a dummy variable indicating that the team’s competitiveness is

higher than the rival team in the matchup. Each team’s competitiveness is computed as the team fixed effects from

Equation (3). See Section 3.2 for regression specifications. *** p <0.01, ** p <0.05, * p <0.1.
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TABLE A17
Effect of Pre-match and Post-match Air Pollution on the Match Outcome

(1) (2) (3) (4) (5) (6) (7) (8)

Prior to Match Day Post Match Day

7-Day 5-Day 3-Day 1-Day 1-Day 3-Day 5-Day 7-Day

Placebo PM2.5 -0.003 0.000 0.002 0.000 -0.001 0.004 -0.000 0.001

(0.009) (0.009) (0.006) (0.005) (0.006) (0.008) (0.010) (0.015)

Placebo PM2.5×Rel.Strong 0.006 -0.000 -0.004 -0.001 0.001 -0.009 0.000 -0.002

(0.008) (0.008) (0.007) (0.007) (0.008) (0.009) (0.009) (0.011)

Control for concurrent PM2.5 Yes Yes Yes Yes Yes Yes Yes Yes

Team-Pair FE Yes Yes Yes Yes Yes Yes Yes Yes

Match-Type FE Yes Yes Yes Yes Yes Yes Yes Yes

City×Year×Month FE Yes Yes Yes Yes Yes Yes Yes Yes

Day-of-Week and Holiday FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 5,052 5,108 5,158 5,186 5,182 5,148 5,092 5,038

R-squares 0.202 0.199 0.199 0.198 0.198 0.199 0.200 0.199

Notes: This table presents the placebo test on the effect of pre-match and post-match air pollution exposure on a team’s winning probability. The dependent

variable is the indicator for winning. Placebo PM2.5 is defined as the match-hour PM2.5 level (in 10 µg/m3) 1 day, 3 days, 5 days, and 7 days before and after

the actual match. Rel.Strong is a dummy variable indicating the team’s competitiveness is higher than the rival team in the matchup. Each team’s competitive-

ness is computed as the team fixed effects from Equation (3). *** p <0.01, ** p <0.05, * p <0.1.
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TABLE A18
Nonlinear Distributional Effects of PM2.5 on Team Performance

(1) (2) (3) (4) (5) (6) (7)

Total Per 10 Mins

Win Kill Assist Gold Kill Assist Gold

PM2.5[1,2.5)×Rel.Weak -0.019 -0.443 -2.057 716.547 -0.207 -0.803 -104.198

(0.051) (0.664) (1.775) (1,068.029) (0.232) (0.608) (198.997)

PM2.5[2.5,5)×Rel.Weak -0.018 -0.406 -1.973 479.229 -0.197 -0.728 -147.345

(0.050) (0.666) (1.799) (1,089.683) (0.227) (0.604) (189.224)

PM2.5[5,7.5)×Rel.Weak -0.059 -0.801 -3.226* -349.704 -0.276 -1.059* -308.726

(0.055) (0.716) (1.888) (1,365.470) (0.244) (0.638) (218.814)

PM2.5[7.5,10)×Rel.Weak -0.060 -1.360 -4.744* -1,711.136 -0.359 -1.254 -241.551

(0.062) (0.921) (2.428) (1,521.545) (0.299) (0.780) (250.569)

PM2.5[10,25)×Rel.Weak -0.188** -2.888*** -9.976*** -5,042.388*** -0.805** -2.832*** -885.988**

(0.090) (1.110) (2.829) (1,880.961) (0.357) (0.923) (342.395)

PM2.5[1,2.5)×Rel.Strong 0.019 0.122 -0.579 1,086.857 -0.002 -0.326 34.007

(0.049) (0.676) (1.870) (1,136.775) (0.225) (0.605) (192.575)

PM2.5[2.5,5)×Rel.Strong 0.018 0.168 -0.514 1,094.237 0.019 -0.255 83.814

(0.045) (0.710) (1.952) (1,057.574) (0.235) (0.637) (193.015)

PM2.5[5,7.5)×Rel.Strong 0.059 1.182* 2.036 1,400.090 0.356 0.567 277.072

(0.053) (0.705) (1.914) (1,182.243) (0.260) (0.681) (224.817)

PM2.5[7.5,10)×Rel.Strong 0.060 0.072 -1.488 -535.684 0.177 -0.075 247.654

(0.065) (0.792) (2.144) (1,275.176) (0.268) (0.689) (254.106)

PM2.5[10,25)×Rel.Strong 0.188** 1.768* 1.438 -364.145 0.757** 0.850 641.603*

(0.087) (0.989) (2.707) (1,784.611) (0.360) (0.951) (341.504)

FEs Yes Yes Yes Yes Yes Yes Yes

Observations 5,222 5,222 5,222 5,222 5,222 5,222 5,222

R-squares 0.198 0.210 0.186 0.229 0.241 0.209 0.234

Notes: This table presents the nonlinear distributional effects of the level of PM2.5 on metrics for a team’s competitive

performance. The dependent variable is the indicator for winning (Column 1), the total amount of kills, assists, and gold

(Columns 2-4), and their per-10-minute counterparts (Columns 5-7). PM [1, 2.5) is the indicator for the level of PM2.5

being within the range 10-25 µg/m3, PM [2.5, 5) for the range 25-50 µg/m3, and so on. Stronger is a dummy variable

indicating that the team’s competitiveness is higher than the rival team in the matchup. Each team’s competitiveness is

computed as the team fixed effects from Equation (3). The full set of FEs are controlled for. See Section 3.2 for details.

*** p <0.01, ** p <0.05, * p <0.1.
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TABLE A19
Acclimation Effects of PM2.5 on Team Performance: Home More Polluted Than Host City

(1) (2) (3) (4) (5) (6) (7)

Total Per 10 Mins

Win Kill Assist Gold Kill Assist Gold

Panel A

PM2.5 -0.002 -0.010 -0.141 -139.203 0.008 -0.013 -0.657

(0.005) (0.063) (0.157) (107.428) (0.019) (0.046) (18.911)

HomeAcclimation 0.034 0.687 0.728 265.003 0.298 0.434 332.361*

(0.049) (0.585) (1.445) (1,150.921) (0.185) (0.456) (196.324)

PM2.5×HomeAcclimation 0.007 -0.018 0.007 67.054 -0.013 -0.019 -2.857

(0.007) (0.085) (0.224) (161.887) (0.026) (0.069) (27.645)

Observations 5,222 5,222 5,222 5,222 5,222 5,222 5,222

R-squares 0.195 0.207 0.182 0.228 0.238 0.206 0.231

Panel B

PM2.5 -0.011** -0.135** -0.456*** -264.631** -0.033* -0.115** -42.858**

(0.005) (0.064) (0.157) (125.431) (0.019) (0.046) (18.958)

PM2.5×Rel.Strong 0.018*** 0.270*** 0.684*** 271.961* 0.090*** 0.221*** 91.504***

(0.006) (0.068) (0.169) (159.370) (0.020) (0.051) (22.540)

HomeAcclimation 0.039 0.757 0.905 335.339 0.321* 0.491 356.027*

(0.048) (0.573) (1.414) (1,136.359) (0.183) (0.450) (191.243)

PM2.5×HomeAcclimation 0.005 -0.050 -0.074 34.614 -0.024 -0.045 -13.772

(0.006) (0.078) (0.205) (157.205) (0.024) (0.064) (24.630)

Observations 5,222 5,222 5,222 5,222 5,222 5,222 5,222

R-squares 0.197 0.209 0.185 0.228 0.241 0.208 0.234

Notes: This table presents the acclimation effects of PM2.5 on team’s competitive performance. The dependent variable is the indicator of win (Column 1),

the number of kills, assists, and gold (Columns 2-4), and their per-10-minute counterparts (Columns 5-7). PM2.5 is the level of PM2.5 (in 10 µg/m3) at the

hour of the match. HomeAcclimation is a dummy variable indicating that the team’s home city has a higher average air pollution level than the daily average

pollution level in host city on the match date. Rel.Strong is a dummy variable indicating the team’s competitiveness index ranks higher than the rival team in

the matchup. Team’s competitiveness is computed as the team fixed effects from Equation (3). All regressions control for team-pair fixed effects, match-type

fixed effects, city-by-year-by-month fixed effects, and day-of-week and public holiday fixed effects. Further details are specified in Section 3.2. Robust standard

errors in parentheses are clustered at team-by-season level. *** p <0.01, ** p <0.05, * p <0.1.
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TABLE A20
Acclimation Effects of PM2.5 on Team Performance: Home More Polluted Than Rival’s Home

(1) (2) (3) (4) (5) (6) (7)

Total Per 10 Mins

Win Kill Assist Gold Kill Assist Gold

Panel A

PM2.5 -0.001 -0.012 -0.157 -109.186 0.008 -0.019 1.139

(0.005) (0.064) (0.158) (104.892) (0.019) (0.048) (19.696)

PM2.5×Rel.HomePolluted 0.003 -0.009 0.049 -19.947 -0.010 -0.000 -6.057

(0.006) (0.083) (0.210) (142.893) (0.026) (0.066) (26.021)

Observations 5,222 5,222 5,222 5,222 5,222 5,222 5,222

R-squares 0.195 0.207 0.182 0.228 0.238 0.206 0.230

Panel B

PM2.5 -0.011** -0.150** -0.509*** -251.511** -0.037* -0.132*** -45.961**

(0.005) (0.066) (0.162) (122.816) (0.020) (0.050) (20.103)

PM2.5×Rel.Strong 0.019*** 0.268*** 0.683*** 276.171* 0.088*** 0.219*** 91.393***

(0.006) (0.068) (0.167) (154.233) (0.020) (0.050) (22.154)

PM2.5×Rel.HomePolluted 0.004 0.001 0.076 -9.007 -0.007 0.009 -2.437

(0.006) (0.075) (0.190) (133.408) (0.024) (0.060) (23.217)

Observations 5,222 5,222 5,222 5,222 5,222 5,222 5,222

R-squares 0.197 0.209 0.185 0.228 0.240 0.208 0.234

Notes: This table presents the acclimation effects of PM2.5 on team’s competitive performance. The dependent variable is the indicator of win (Column 1), the

number of kills, assists, and gold (Columns 2-4), and their per-10-minute counterparts (Columns 5-7). PM2.5 is the level of PM2.5 (in 10 µg/m3) at the hour of

the match. Rel.HomePolluted is a dummy variable indicating that the team’s home city has a higher average air pollution level than the rival team. Rel.Strong

is a dummy variable indicating the team’s competitiveness index ranks higher than the rival team in the matchup. Team’s competitiveness is computed as the

team fixed effects from Equation (3). All regressions control for team-pair fixed effects, match-type fixed effects, city-by-year-by-month fixed effects, and day-of-

week and public holiday fixed effects. Further details are specified in Section 3.2. Robust standard errors in parentheses are clustered at team-by-season level.

*** p <0.01, ** p <0.05, * p <0.1.
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TABLE A21
Home-advantage Effects of PM2.5 on Team Performance

(1) (2) (3) (4) (5) (6) (7)

Total Per 10 Mins

Win Kill Assist Gold Kill Assist Gold

Panel A

PM2.5 0.005 0.036 -0.006 -49.927 0.018 0.016 15.200

(0.005) (0.058) (0.156) (109.058) (0.017) (0.046) (17.819)

HomeAdvantage -0.017 -0.192 -0.189 9.865 -0.098 -0.164 -119.164

(0.032) (0.360) (0.897) (589.411) (0.125) (0.301) (130.463)

PM2.5×HomeAdvantage -0.011* -0.115* -0.297* -150.877 -0.030 -0.077 -36.408

(0.006) (0.067) (0.163) (116.119) (0.024) (0.056) (23.292)

Observations 5,222 5,222 5,222 5,222 5,222 5,222 5,222

R-squares 0.196 0.208 0.183 0.228 0.239 0.206 0.232

Panel B

PM2.5 -0.006 -0.120* -0.402** -206.008 -0.035* -0.114** -38.101*

(0.006) (0.071) (0.179) (144.919) (0.021) (0.053) (21.881)

PM2.5×Rel.Strong 0.017*** 0.252*** 0.639*** 251.922 0.085*** 0.209*** 86.031***

(0.006) (0.072) (0.174) (158.346) (0.022) (0.053) (23.527)

HomeAdvantage -0.031 -0.391 -0.694 -189.272 -0.165 -0.329 -187.170

(0.032) (0.357) (0.881) (581.570) (0.124) (0.294) (126.719)

PM2.5×HomeAdvantage -0.006 -0.046 -0.123 -82.159 -0.007 -0.020 -12.941

(0.006) (0.070) (0.166) (114.016) (0.025) (0.057) (23.325)

Observations 5,222 5,222 5,222 5,222 5,222 5,222 5,222

R-squares 0.198 0.210 0.185 0.228 0.241 0.209 0.235

Notes: This table presents the acclimation effects of PM2.5 on team’s competitive performance. The dependent variable is the indicator of win (Column 1), the

number of kills, assists, and gold (Columns 2-4), and their per-10-minute counterparts (Columns 5-7). PM2.5 is the level of PM2.5 (in 10 µg/m3) at the hour of the

match. HomeAdvantage is a dummy variable indicating that the team’s home city is the host city on the match date. Rel.Strong is a dummy variable indicating

the team’s competitiveness index ranks higher than the rival team in the matchup. Team’s competitiveness is computed as the team fixed effects from Equation

(3). All regressions control for team-pair fixed effects, match-type fixed effects, city-by-year-by-month fixed effects, and day-of-week and public holiday fixed

effects. Further details are specified in Section 3.2. Robust standard errors in parentheses are clustered at team-by-season level. *** p <0.01, ** p <0.05, * p <0.1.
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TABLE A22
Effects of PM2.5 on Online Search Activities for Pollution-related Keywords

(1) (2) (3) (4) (5) (6)

Dependent Variable Search for PM2.5 Search for Harm of PM2.5 Search for Face Mask

PM2.5 167.8*** 3.604*** 7.611***

(4.883) (0.271) (1.097)

Severe (PM2.5>75 µg/m3) 744.6*** 17.56*** 27.47***

(49.58) (2.433) (9.700)

Year×Month×Week FE Yes Yes Yes Yes Yes Yes

Observations 3,025 3,025 3,025 3,025 3,025 3,025

R-squared 0.760 0.678 0.514 0.491 0.884 0.882

Notes: This table presents the effects of PM2.5 (in 10 µg/m3) and an indicator of severe air pollution (PM2.5>75

µg/m3) on online search activities for pollution-related keywords. Columns (1) and (2) present the search for the

level of PM2.5, Columns (3) and (4) for the health damages of PM2.5, and Columns (5) and (6) for PM2.5-proof face

mask. Robust standard errors in parentheses are clustered at team-by-season level. *** p <0.01, ** p <0.05, * p <0.1.
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TABLE A23
Effects of Air Pollution on Decision Time and Pick-and-switch

(1) (2) (3) (4)

Panel A: Dependent Variable: Decision Time (normalized by S.D.)

PM2.5 -0.006 -0.012 -0.017 -0.016

(0.034) (0.034) (0.035) (0.034)

PM2.5×Abs. Weak 0.017 -0.007

(0.013) (0.017)

PM2.5×Rel. Weak 0.022*** 0.025**

(0.008) (0.010)

Observations 5,006 5,006 5,006 5,006

R-squares 0.434 0.435 0.435 0.435

Panel B: Dependent Variable: Frequency of Pick-and-switch (normalized by S.D.)

PM2.5 0.016 0.010 0.005 0.006

(0.038) (0.039) (0.039) (0.039)

PM2.5×Abs. Weak 0.018 -0.006

(0.020) (0.024)

PM2.5×Rel. Weak 0.023* 0.026*

(0.012) (0.013)

Observations 5,002 5,002 5,002 5,002

R-squares 0.350 0.350 0.351 0.351

Notes: This table tests the effects of PM2.5 on team and player efforts in the preparation phase of the match. The

dependent variable in Panel A is the time a player takes to finalize his choice of champion; and the dependent vari-

able in Panel B is the number of times a player changes his choice of champion before the final decision. PM2.5 is

the level of PM2.5 (in 10 µg/m3) at the hour of the match near the match stadium. Rel.Weak indicates that the

team’s competitiveness is lower than the rival team. Abs.Weak indicates that the team’s competitiveness is lower

than half of all teams. See the computation of team’s competitiveness in Equation (3). All regressions control for

team-pair fixed effects, match-type fixed effects, city-by-year-by-month fixed effects, and day-of-week and public

holiday fixed effects. *** p <0.01, ** p <0.05, * p <0.1.

86



Appendix G Figures

FIGURE B1
Map for LoL Games

Notes: This figure presents the map layout for LoL games. The diagonal corners at the bottom left and upper right,
respectively, are the homebase for the two rival teams. Defensive turrets are positioned along the top, middle, and
bottom lanes, while neutral minions spawn in the jungles.
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FIGURE B2
Post-game Statistics for LoL Games

Notes: This figure presents the post-game statistics for a standard LoL match.
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FIGURE B3
Average Concentration of PM2.5 in LPL Hosting Cities

Notes: This figure presents the spatial distribution of average concentrations of PM2.5 in LPL hosting cities during
the sample period (from 2017 to 2021). Unit of PM2.5 is 10 µg/m3.

89



FIGURE B4
Falsification Test of Winning Rate in Last Season and PM2.5 in Current Game

Notes: This figure presents the distribution of each team’s average winning rate against different rival teams in the
last season to the level of PM2.5 on the match day in this season, given the same rival team. Unit of PM2.5 is 10
µg/m3.
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(A) Nonlinear Effects on the Stronger Team

(B) Nonlinear Effects on the Weaker Team

FIGURE B5
Nonlinear Effects of Air Pollution on Competitive Performance

Notes: This figure presents the nonlinear distributional effects of air pollution on a team’s competitive performance.
Panel A plots the nonlinear effects of air pollution on the competitive performance of the stronger team in the matchup;
Panel B plots the nonlinear effects on the weaker team. Detailed regression results are reported in Appendix Table
A18. Unit of PM2.5 is 10 µg/m3.
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(A) Search for the level of PM2.5

(B) Search for the health damages of PM2.5

(C) Search for PM2.5-proof face mask

FIGURE B6
Scatter Plot of Pollution-related Search and PM2.5

Notes: This figure depicts the scatter plot of daily Baidu search volume of pollution-related keywords against daily
level of PM2.5 in our analytical sample. Panel A presents the search for the level of PM2.5, Panel B for the health
damages of PM2.5, and Panel C for PM2.5-proof face mask. Unit of PM2.5 is 10 µg/m3.
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FIGURE B7
Distribution of the Number of Pick-and-switch in a Match

Notes: This figure presents the distribution of the number of pick-and-switch of a player in a given match. In the
preparation phase of the match, each player in the team is allowed to pick a champion and change his choice by any
number of times within a 30-second time limit.
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